Câu hỏi:
18/08/2023 2,587Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: B
Ta có:
5x + 251-x = 6
⇔ 5x + 52(1-x) = 6
\( \Leftrightarrow {5^x} + \frac{{{5^2}}}{{{5^{2x}}}} = 6\)
⇔ 53x + 25 = 6.52x
Đặt t = 5x > 0
Khi đó phương trình trở thành:
t3 – 6t2 + 25 = 0
⇔ (t – 5)(t2 – t – 5) = 0
\( \Leftrightarrow \left[ \begin{array}{l}t = 5\\t = \frac{{1 + \sqrt {21} }}{2}\\t = \frac{{1 - \sqrt {21} }}{2}\end{array} \right.\)
Vì t > 0 nên ta có: \(\left[ \begin{array}{l}t = 5\\t = \frac{{1 + \sqrt {21} }}{2}\end{array} \right.\)
Với t = 5 ⇒ 5x = 5 ⇔ x = 1
Với \(t = \frac{{1 + \sqrt {21} }}{2} \Rightarrow {5^x} = \frac{{1 + \sqrt {21} }}{2} \Leftrightarrow x = {\log _5}\left( {\frac{{1 + \sqrt {21} }}{2}} \right)\)
Vậy tích các nghiệm của phương trình bằng: \({\log _5}\left( {\frac{{1 + \sqrt {21} }}{2}} \right)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, mặt bên (SBC) là tam giác đều cạnh a và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Khoảng cách giữa hai đường thẳng SA và BC bằng
Câu 2:
Giá trị nhỏ nhất của hàm số y = x3 + 2x2 – 7x trên đoạn [0; 4] bằng
Câu 4:
Tập nghiệm của phương trình \({5^x}{.8^{\frac{{x - 1}}{x}}} = 500\) là
Câu 6:
về câu hỏi!