Câu hỏi:
12/07/2024 323Cho hàm số y = f(x) xác định trên ℝ và có đạo hàm \(f'\left( x \right)\) thỏa mãn \(f'\left( x \right) = \left( {1 - x} \right)\left( {x + 2} \right)g\left( x \right) + 2018\) trong đó g(x) < 0, ∀x ∈ ℝ. Hàm số y = f(1 – x) + 2018x + 2019 nghịch biến trên khoảng nào?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Vì \(f'\left( x \right) = \left( {1 - x} \right)\left( {x + 2} \right)g\left( x \right) + 2018\)
⇒ \(f'\left( {1 - x} \right) = \left( {1 - \left( {1 - x} \right)} \right)\left( {\left( {1 - x} \right) + 2} \right)g\left( {1 - x} \right) + 2018\)
\( = x\left( {3 - x} \right)g\left( {1 - x} \right) + 2018\)
Ta có: y = f(1 – x) + 2018x + 2019
⇒ \(y' = f'\left( {1 - x} \right).{\left( {1 - x} \right)^\prime } + 2018 = - f'\left( {1 - x} \right) + 2018\)
\( = - \left[ {x\left( {3 - x} \right)g\left( {1 - x} \right) + 2018} \right] + 2018 = x\left( {x - 3} \right)g\left( {1 - x} \right)\)
Mà g(x) < 0, ∀x ∈ ℝ, suy ra, để hàm số nghịch biến thì x(x – 3) ≥ 0
⇔ \(\left[ {\begin{array}{*{20}{c}}{x \le 0}\\{x \ge 3}\end{array}} \right.\)
Vậy hàm số y = f(x) nghịch biến trên các khoảng (-∞; 0), (3; +∞).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Biết phương trình \(\log _2^2x - 2{\log _2}\left( {2x} \right) - 1 = 0\) có hai nghiệm x1, x2. Tính x1x2.
Câu 2:
Cho ngũ giác ABCDE. Gọi M, N, P, Q lần lượt là trung điểm các cạnh AB, BC, CD, DE. Gọi I, J lần lượt là trung điểm MP, NQ. Chứng minh IJ // AE và AE = 4IJ.
Câu 3:
Có 5 cái bánh, chia đều cho 8 em. Hỏi mỗi em được bao nhiêu phần cái bánh?
Câu 4:
Cho hình vuông ABCD cạnh a. Tính \(\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right).\left( {\overrightarrow {BC} + \overrightarrow {BD} } \right).\)
Câu 5:
Cho hình chóp S.ABC. Gọi M, N lần lượt là trung điểm của SA, BC và P là điểm nằm trên cạnh AB sao cho \(AP = \frac{1}{3}AB.\) Gọi Q là giao điểm của SC và (MNP). Tính tỉ số \(\frac{{SQ}}{{SC}}.\)
Câu 6:
Cho tứ diện ABCD. Gọi H, K lần lượt là trung điểm của các cạnh AC, BC. Trong tam giác BCD lấy điểm M sao cho hai đường thẳng KM và CD cắt nhau tại I. Tìm thiết diện của tứ diện với (HKM) trong hai trường hợp:
a) I nằm ngoài đoạn CD.
b) I nằm trong đoạn CD.
Câu 7:
Cho hình chóp tam giác S.ABC, gọi M, N lần lượt là trung điểm của SB và SC. Tính tỉ số thể tích của khối chóp S.AMN và S.ABC.
về câu hỏi!