Câu hỏi:

12/07/2024 191

Cho hình trụ có hai đáy là hai hình tròn (O; R) và (O′; R). AB là một dây cung của đường tròn (O; R) sao cho tam giác O′AB là tam giác đều và mặt phẳng (O′AB) tạo với mặt phẳng chứa đường tròn (O; R) một góc \(60^\circ .\) Tính theo R thể tích V của khối trụ đã cho.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình trụ có hai đáy là hai hình tròn (O; R) và (O′; R). AB là một dây cung của (ảnh 1)

Gọi I là trung điểm của AB thì O′I AB, OI AB.

Suy ra góc giữa (O′AB) và (O; R) là góc giữa O′I và OI hay \(\widehat {O'IO} = 60^\circ .\)

Đặt AI = x AB = 2x.

Tam giác vuông OIA có OA = R, AI = x 

\(OI = \sqrt {O{A^2} - A{I^2}} = \sqrt {{R^2} - {x^2}} .\)

Tam giác O′AB đều cạnh AB = 2x \(O'I = \frac{{2x\sqrt 3 }}{2} = x\sqrt 3 .\)

Tam giác O′OI vuông tại O nên \(\cos 60^\circ = \frac{{OI}}{{O'I}}\)

\(\frac{1}{2} = \frac{{\sqrt {{R^2} - {x^2}} }}{{x\sqrt 3 }}\) \(x = \frac{{2R}}{{\sqrt 7 }}.\)

Suy ra \(OO' = O'I.\sin 60^\circ = \frac{{2R}}{{\sqrt 7 }}.\sqrt 3 .\frac{{\sqrt 3 }}{2} = \frac{{3R\sqrt 7 }}{7}.\)

Thể tích khối trụ \(V = \pi {R^2}h = \pi {R^2}.\frac{{3R\sqrt 7 }}{7} = \frac{{3\pi \sqrt 7 {R^3}}}{7}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

ĐK: x > 0.

\(\log _2^2x - 2{\log _2}\left( {2x} \right) - 1 = 0\) \(\log _2^2x - 2{\log _2}2 - 2{\log _2}x - 1 = 0\)

\(\log _2^2x - 2{\log _2}x - 3 = 0\) (*)

Đặt log2x = t. Khi đó ta có:

(*) \({t^2} - 2t - 3 = 0\) (t + 1)(t – 3) = 0

\(\left[ {\begin{array}{*{20}{c}}{t + 1 = 0}\\{t - 3 = 0}\end{array}} \right.\) \(\left[ {\begin{array}{*{20}{c}}{t = - 1}\\{t = 3}\end{array}} \right.\) \(\left[ {\begin{array}{*{20}{c}}{{{\log }_2}x = - 1}\\{{{\log }_2}x = 3}\end{array}} \right.\)

\(\left[ {\begin{array}{*{20}{c}}{x = {2^{ - 1}} = \frac{1}{2}\left( {tm} \right)}\\{x = {2^3} = 8\left( {tm} \right)}\end{array}} \right.\)

\({x_1}{x_2} = \frac{1}{2}.8 = 4.\)

Lời giải

Ta có: \(2\overrightarrow {IJ} = \overrightarrow {IQ} + \overrightarrow {IN} = \overrightarrow {IM} + \overrightarrow {MQ} + \overrightarrow {IP} + \overrightarrow {PN} = \overrightarrow {MQ} + \overrightarrow {PN} \)

\( = \frac{1}{2}\left( {\overrightarrow {AE} + \overrightarrow {BD} } \right) + \frac{1}{2}\overrightarrow {DB} = \frac{1}{2}\overrightarrow {AE} \)

Do đó: \(\overrightarrow {IJ} = \frac{1}{4}\overrightarrow {AE} \) \(4\overrightarrow {IJ} = \overrightarrow {AE} .\)

Vậy IJ // AE và 4IJ = AE.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP