Câu hỏi:
12/07/2024 136Cho hình trụ có hai đáy là hai hình tròn (O; R) và (O′; R). AB là một dây cung của đường tròn (O; R) sao cho tam giác O′AB là tam giác đều và mặt phẳng (O′AB) tạo với mặt phẳng chứa đường tròn (O; R) một góc \(60^\circ .\) Tính theo R thể tích V của khối trụ đã cho.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi I là trung điểm của AB thì O′I ⊥ AB, OI ⊥ AB.
Suy ra góc giữa (O′AB) và (O; R) là góc giữa O′I và OI hay \(\widehat {O'IO} = 60^\circ .\)
Đặt AI = x ⇒ AB = 2x.
Tam giác vuông OIA có OA = R, AI = x
⇒ \(OI = \sqrt {O{A^2} - A{I^2}} = \sqrt {{R^2} - {x^2}} .\)
Tam giác O′AB đều cạnh AB = 2x ⇒ \(O'I = \frac{{2x\sqrt 3 }}{2} = x\sqrt 3 .\)
Tam giác O′OI vuông tại O nên \(\cos 60^\circ = \frac{{OI}}{{O'I}}\)
⇔ \(\frac{1}{2} = \frac{{\sqrt {{R^2} - {x^2}} }}{{x\sqrt 3 }}\) ⇔ \(x = \frac{{2R}}{{\sqrt 7 }}.\)
Suy ra \(OO' = O'I.\sin 60^\circ = \frac{{2R}}{{\sqrt 7 }}.\sqrt 3 .\frac{{\sqrt 3 }}{2} = \frac{{3R\sqrt 7 }}{7}.\)
Thể tích khối trụ \(V = \pi {R^2}h = \pi {R^2}.\frac{{3R\sqrt 7 }}{7} = \frac{{3\pi \sqrt 7 {R^3}}}{7}.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ngũ giác ABCDE. Gọi M, N, P, Q lần lượt là trung điểm các cạnh AB, BC, CD, DE. Gọi I, J lần lượt là trung điểm MP, NQ. Chứng minh IJ // AE và AE = 4IJ.
Câu 2:
Biết phương trình \(\log _2^2x - 2{\log _2}\left( {2x} \right) - 1 = 0\) có hai nghiệm x1, x2. Tính x1x2.
Câu 3:
Cho hình vuông ABCD cạnh a. Tính \(\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right).\left( {\overrightarrow {BC} + \overrightarrow {BD} } \right).\)
Câu 4:
Cho hình chóp tam giác S.ABC, gọi M, N lần lượt là trung điểm của SB và SC. Tính tỉ số thể tích của khối chóp S.AMN và S.ABC.
Câu 5:
Cho hình chóp S.ABC. Gọi M, N lần lượt là trung điểm của SA, BC và P là điểm nằm trên cạnh AB sao cho \(AP = \frac{1}{3}AB.\) Gọi Q là giao điểm của SC và (MNP). Tính tỉ số \(\frac{{SQ}}{{SC}}.\)
Câu 6:
Có 5 cái bánh, chia đều cho 8 em. Hỏi mỗi em được bao nhiêu phần cái bánh?
Câu 7:
Cho tứ diện ABCD. Gọi H, K lần lượt là trung điểm của các cạnh AC, BC. Trong tam giác BCD lấy điểm M sao cho hai đường thẳng KM và CD cắt nhau tại I. Tìm thiết diện của tứ diện với (HKM) trong hai trường hợp:
a) I nằm ngoài đoạn CD.
b) I nằm trong đoạn CD.
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
206 câu Bài tập Nguyên hàm, tích phân cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
175 câu Bài tập Số phức cơ bản, nâng cao có lời giải (P1)
về câu hỏi!