Câu hỏi:

18/08/2023 1,388

Cho hình chóp S.ABCD có đáy là hình thang đáy lớn AD. Gọi G là trọng tâm tam giác SCD. Thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng (ABG) là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Cho hình chóp S.ABCD có đáy là hình thang đáy lớn AD. Gọi G là trọng tâm tam  (ảnh 1)

Từ G kẻ đường thẳng song song với AB lần lượt cắt SC, SD tại E, F.

Vậy thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng (ABG) là hình tứ giác ABEF.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

ĐK: x > 0.

\(\log _2^2x - 2{\log _2}\left( {2x} \right) - 1 = 0\) \(\log _2^2x - 2{\log _2}2 - 2{\log _2}x - 1 = 0\)

\(\log _2^2x - 2{\log _2}x - 3 = 0\) (*)

Đặt log2x = t. Khi đó ta có:

(*) \({t^2} - 2t - 3 = 0\) (t + 1)(t – 3) = 0

\(\left[ {\begin{array}{*{20}{c}}{t + 1 = 0}\\{t - 3 = 0}\end{array}} \right.\) \(\left[ {\begin{array}{*{20}{c}}{t = - 1}\\{t = 3}\end{array}} \right.\) \(\left[ {\begin{array}{*{20}{c}}{{{\log }_2}x = - 1}\\{{{\log }_2}x = 3}\end{array}} \right.\)

\(\left[ {\begin{array}{*{20}{c}}{x = {2^{ - 1}} = \frac{1}{2}\left( {tm} \right)}\\{x = {2^3} = 8\left( {tm} \right)}\end{array}} \right.\)

\({x_1}{x_2} = \frac{1}{2}.8 = 4.\)

Lời giải

Ta có: \(2\overrightarrow {IJ} = \overrightarrow {IQ} + \overrightarrow {IN} = \overrightarrow {IM} + \overrightarrow {MQ} + \overrightarrow {IP} + \overrightarrow {PN} = \overrightarrow {MQ} + \overrightarrow {PN} \)

\( = \frac{1}{2}\left( {\overrightarrow {AE} + \overrightarrow {BD} } \right) + \frac{1}{2}\overrightarrow {DB} = \frac{1}{2}\overrightarrow {AE} \)

Do đó: \(\overrightarrow {IJ} = \frac{1}{4}\overrightarrow {AE} \) \(4\overrightarrow {IJ} = \overrightarrow {AE} .\)

Vậy IJ // AE và 4IJ = AE.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP