Câu hỏi:
18/08/2023 223Một tam giác ABC có số đo góc đỉnh A là \(60^\circ .\) Biết số đo góc B là một nghiệm của phương trình \({\sin ^2}4x + 2\sin 4x.\cos 4x - {\cos ^2}4x = 0.\) Tìm số tam giác thỏa mãn yêu cầu bài toán.
Quảng cáo
Trả lời:
Ta có: sin24x + 2sin 4x.cos 4x − cos24x = 0 (1).
TH1: cos24x = 0 ⇔ sin24x = 1, phương trình (1) trở thành 1 = 0 (Vô nghiệm) ⇒ Loại.
TH2: cos24x ≠ 0. Chia cả 2 vế của phương trình cho cos24x, ta được:
tan24x + 2tan 4x – 1 = 0 ⇔ \(\left[ {\begin{array}{*{20}{c}}{\tan 4x = - 1 + \sqrt 2 }\\{\tan 4x = - 1 - \sqrt 2 }\end{array}} \right.\)
⇔ \(\left[ {\begin{array}{*{20}{c}}{4x = \frac{\pi }{8} + k\pi }\\{4x = - \frac{{3\pi }}{8} + k\pi }\end{array}} \right.\)⇔ \(\left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{{32}} + \frac{{k\pi }}{4}}\\{x = \frac{{ - 3\pi }}{{32}} + \frac{{k\pi }}{4}}\end{array}} \right.\) (k ∈ ℤ)
Vì B là góc của tam giác nên 0 < B < π.
· Xét nghiệm \(x = \frac{\pi }{{32}} + \frac{{k\pi }}{4}\) (k ∈ ℤ) ta có:
\(0 < \frac{\pi }{{32}} + \frac{{k\pi }}{4} < \pi \) ⇔ \( - \frac{1}{8} < k < \frac{{31}}{8}\)
⇒ k ∈ {0; 1; 2; 3} (k ∈ ℤ)
· Xét nghiệm \(x = - \frac{{3\pi }}{{32}} + \frac{{k\pi }}{4}\) (k ∈ ℤ) ta có:
\(0 < - \frac{{3\pi }}{{32}} + \frac{{k\pi }}{4} < \pi \) ⇔ \(\frac{3}{8} < k < \frac{{35}}{8}\)
⇒ k ∈ {1; 2; 3; 4} (k ∈ ℤ)
Suy ra phương trình trên có 8 nghiệm thỏa mãn, tức là có 8 giá trị góc B thỏa mãn.
Ứng với mỗi giá trị của góc B cho ta 1 tam giác. Vậy có 8 tam giác thỏa mãn yêu cầu bài toán.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
ĐK: x > 0.
\(\log _2^2x - 2{\log _2}\left( {2x} \right) - 1 = 0\) ⇔ \(\log _2^2x - 2{\log _2}2 - 2{\log _2}x - 1 = 0\)
⇔ \(\log _2^2x - 2{\log _2}x - 3 = 0\) (*)
Đặt log2x = t. Khi đó ta có:
(*) ⇔ \({t^2} - 2t - 3 = 0\) ⇔ (t + 1)(t – 3) = 0
⇔ \(\left[ {\begin{array}{*{20}{c}}{t + 1 = 0}\\{t - 3 = 0}\end{array}} \right.\) ⇔ \(\left[ {\begin{array}{*{20}{c}}{t = - 1}\\{t = 3}\end{array}} \right.\) ⇔ \(\left[ {\begin{array}{*{20}{c}}{{{\log }_2}x = - 1}\\{{{\log }_2}x = 3}\end{array}} \right.\)
⇔ \(\left[ {\begin{array}{*{20}{c}}{x = {2^{ - 1}} = \frac{1}{2}\left( {tm} \right)}\\{x = {2^3} = 8\left( {tm} \right)}\end{array}} \right.\)
⇒ \({x_1}{x_2} = \frac{1}{2}.8 = 4.\)
Lời giải
Ta có: \(2\overrightarrow {IJ} = \overrightarrow {IQ} + \overrightarrow {IN} = \overrightarrow {IM} + \overrightarrow {MQ} + \overrightarrow {IP} + \overrightarrow {PN} = \overrightarrow {MQ} + \overrightarrow {PN} \)
\( = \frac{1}{2}\left( {\overrightarrow {AE} + \overrightarrow {BD} } \right) + \frac{1}{2}\overrightarrow {DB} = \frac{1}{2}\overrightarrow {AE} \)
Do đó: \(\overrightarrow {IJ} = \frac{1}{4}\overrightarrow {AE} \) ⇒ \(4\overrightarrow {IJ} = \overrightarrow {AE} .\)
Vậy IJ // AE và 4IJ = AE.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)