Câu hỏi:

18/08/2023 175

Một tam giác ABC có số đo góc đỉnh A là \(60^\circ .\) Biết số đo góc B là một nghiệm của phương trình \({\sin ^2}4x + 2\sin 4x.\cos 4x - {\cos ^2}4x = 0.\) Tìm số tam giác thỏa mãn yêu cầu bài toán.

Sách mới 2k7: 30 đề đánh giá năng lực ĐHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Đề ĐGNL Hà Nội Đề ĐGNL Tp.Hồ Chí Minh Đề ĐGTD Bách Khoa HN

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: sin24x + 2sin 4x.cos 4x − cos24x = 0  (1).

TH1: cos24x = 0 sin24x = 1, phương trình (1) trở thành 1 = 0 (Vô nghiệm)  Loại.

TH2: cos24x ≠ 0. Chia cả 2 vế của phương trình cho cos24x, ta được:

tan24x + 2tan 4x – 1 = 0 \(\left[ {\begin{array}{*{20}{c}}{\tan 4x = - 1 + \sqrt 2 }\\{\tan 4x = - 1 - \sqrt 2 }\end{array}} \right.\)

\(\left[ {\begin{array}{*{20}{c}}{4x = \frac{\pi }{8} + k\pi }\\{4x = - \frac{{3\pi }}{8} + k\pi }\end{array}} \right.\) \(\left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{{32}} + \frac{{k\pi }}{4}}\\{x = \frac{{ - 3\pi }}{{32}} + \frac{{k\pi }}{4}}\end{array}} \right.\) (k ℤ)

Vì B là góc của tam giác nên 0 < B < π.

· Xét nghiệm \(x = \frac{\pi }{{32}} + \frac{{k\pi }}{4}\) (k ℤ) ta có:

\(0 < \frac{\pi }{{32}} + \frac{{k\pi }}{4} < \pi \) \( - \frac{1}{8} < k < \frac{{31}}{8}\)

k {0; 1; 2; 3} (k ℤ)

· Xét nghiệm \(x = - \frac{{3\pi }}{{32}} + \frac{{k\pi }}{4}\) (k ℤ) ta có:

\(0 < - \frac{{3\pi }}{{32}} + \frac{{k\pi }}{4} < \pi \) \(\frac{3}{8} < k < \frac{{35}}{8}\)

k {1; 2; 3; 4} (k ℤ)

Suy ra phương trình trên có 8 nghiệm thỏa mãn, tức là có 8 giá trị góc B thỏa mãn.

Ứng với mỗi giá trị của góc B cho ta 1 tam giác. Vậy có 8 tam giác thỏa mãn yêu cầu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho ngũ giác ABCDE. Gọi M, N, P, Q lần lượt là trung điểm các cạnh AB, BC, CD, DE. Gọi I, J lần lượt là trung điểm MP, NQ. Chứng minh IJ // AE và AE = 4IJ.

Cho ngũ giác ABCDE. Gọi M, N, P, Q lần lượt là trung điểm các cạnh AB, BC, CD (ảnh 1)

Xem đáp án » 12/07/2024 9,191

Câu 2:

Biết phương trình \(\log _2^2x - 2{\log _2}\left( {2x} \right) - 1 = 0\) có hai nghiệm x1, x2. Tính x1x2.

Xem đáp án » 12/07/2024 7,059

Câu 3:

Cho hình vuông ABCD cạnh a. Tính \(\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right).\left( {\overrightarrow {BC} + \overrightarrow {BD} } \right).\)

Xem đáp án » 18/08/2023 5,567

Câu 4:

Cho hình chóp tam giác S.ABC, gọi M, N lần lượt là trung điểm của SB và SC. Tính tỉ số thể tích của khối chóp S.AMN và S.ABC.

Xem đáp án » 18/08/2023 3,543

Câu 5:

Cho hình chóp S.ABC. Gọi M, N lần lượt là trung điểm của SA, BC và P là điểm nằm trên cạnh AB sao cho \(AP = \frac{1}{3}AB.\) Gọi Q là giao điểm của SC và (MNP). Tính tỉ số \(\frac{{SQ}}{{SC}}.\)

Xem đáp án » 12/07/2024 3,467

Câu 6:

Một vận động viên bắn súng, bắn ba viên đạn. Xác suất để trúng cả ba viên vòng 10 là 0,0008; xác suất đề một viên trúng vòng 8 là 0,15; xác suất để một viên trúng vòng dưới 8 là 0,4. Biết rằng các lần bắn là độc lập với nhau. Xác suất để vận động viên đó đạt ít nhất 28 điểm có giá trị gần bằng nhất với số nào sau đây?

Xem đáp án » 18/08/2023 2,791

Câu 7:

Có 5 cái bánh, chia đều cho 8 em. Hỏi mỗi em được bao nhiêu phần cái bánh?

Xem đáp án » 12/07/2024 2,757

Bình luận


Bình luận