Câu hỏi:

18/08/2023 676

Tìm x để y = sinx + cosx + sin2x – 1 đạt giá trị lớn nhất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đặt t = sinx + cos x

Khi đó: t = \(\sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right)\)

Vậy t \(\left[ { - \sqrt 2 ;\sqrt 2 } \right]\)

Và t2 = sin2x + cos2x + 2sinxcosx = 1 + 2sinxcosx

Suy ra: 2sinxcosx = sin2x = t2 – 1

Phương trình đã cho trở thành: y = t + 1 – t2 – 1 = –t2 + t

Hàm số bậc 2 này có đồ thị là 1 Parabol úp xuống, với tọa độ đỉnh là \(\left( {\frac{1}{2};\frac{1}{4}} \right)\), đây cũng điểm cao nhất của đồ thị, tức là khi hàm số đạt giá trị lớn nhất

Suy ra: GTLN của hàm số tại t = \(\frac{1}{2}\)

Suy ra: \(\sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right) = \frac{1}{2}\)

\(\sin \left( {x + \frac{\pi }{4}} \right) = \frac{1}{{2\sqrt 2 }}\)

Do đó: \[\left[ \begin{array}{l}x = - \frac{\pi }{4} + \arctan \left( {\frac{1}{{2\sqrt 2 }}} \right) + k2\pi \\x = \frac{{3\pi }}{4} - \arctan \left( {\frac{1}{{2\sqrt 2 }}} \right) + k2\pi \end{array} \right.\].

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho ΔABC vuông tại A. Kẻ BD là tia phân giác của \(\widehat {ABC}\)(D AC). Trên cạnh BC lấy điểm E sao cho BE = BA.

a) Chứng minh ΔABD = ΔEBD.

b) Chứng minh: DE = AD và DE vuông góc với BC.

c) Chứng minh: BD là đường trung trực của đoạn AE.

d) Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh ba điểm F, D, E thẳng hàng.

Xem đáp án » 18/08/2023 106,306

Câu 2:

Phép cộng, trừ 2 số cùng số mũ.

Xem đáp án » 18/08/2023 25,111

Câu 3:

Có 3 bì thư giống nhau lần lượt được đánh số thứ tự từ 1 đến 3 và 3 con tem giống nhau lần lượt đánh số thứ tự từ 1 đến 3. Dán 3 con tem đó vào 3 bì thư sao cho không có bì thư nào không có tem. Tính xác suất để lấy ra được 2 bì thư trong 3 bì thư trên sao cho mỗi bì thư đều có số thứ tự giống với số thứ tự con tem đã dán vào nó.

Xem đáp án » 18/08/2023 18,178

Câu 4:

Một cửa hàng nhập về 50 chiếc túi xách với giá góc 150 000 đồng/cái. Cửa hàng đã bán 30 chiếc với giá mỗi chiếc lãi 30% so với giá gốc, 20 chiếc còn lại bán lỗ 5% so với giá gốc. Hỏi sau khi bán hết 50 chiếc túi xách cửa hàng đó lãi hay lỗ bao nhiêu tiền?

Xem đáp án » 18/08/2023 12,984

Câu 5:

Tích các nghiệm của phương trình: logx(125x) . log252x = 1?

Xem đáp án » 12/07/2024 12,631

Câu 6:

Cho tam giác ABC có ba góc nhọn và đường cao BE. Gọi H và K lần lượt là chân các đường vuông góc kẻ từ điểm E đến các đường thẳng AB và BC.

1) Chứng minh tứ giác BHEK là tứ giác nội tiếp.

2) Chứng minh: BH.BA = BK.BC.

3) Gọi F là chân đường vuông góc kẻ từ điểm C đến đường thẳng AB và I là trung điểm của đoạn thẳng EF. Chứng minh ba điểm H, I, K là ba điểm thẳng hàng.

Xem đáp án » 18/08/2023 11,537

Câu 7:

Trên cùng phía của đường thẳng xy, vẽ 2 đường thằng AH và BK, sao cho AH vuông góc với xy ở H, BK vuông góc với xy ở K và BK = AH. Gọi O là trung điểm của đoạn HK. Chứng minh: \(\widehat {AOH} = \widehat {BOK}\).

Xem đáp án » 18/08/2023 10,574
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua