Quảng cáo
Trả lời:
Đặt t = sinx + cos x
Khi đó: t = \(\sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right)\)
Vậy t ∈ \(\left[ { - \sqrt 2 ;\sqrt 2 } \right]\)
Và t2 = sin2x + cos2x + 2sinxcosx = 1 + 2sinxcosx
Suy ra: 2sinxcosx = sin2x = t2 – 1
Phương trình đã cho trở thành: y = t + 1 – t2 – 1 = –t2 + t
Hàm số bậc 2 này có đồ thị là 1 Parabol úp xuống, với tọa độ đỉnh là \(\left( {\frac{1}{2};\frac{1}{4}} \right)\), đây cũng điểm cao nhất của đồ thị, tức là khi hàm số đạt giá trị lớn nhất
Suy ra: GTLN của hàm số tại t = \(\frac{1}{2}\)
Suy ra: \(\sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right) = \frac{1}{2}\)
⇔ \(\sin \left( {x + \frac{\pi }{4}} \right) = \frac{1}{{2\sqrt 2 }}\)
Do đó: \[\left[ \begin{array}{l}x = - \frac{\pi }{4} + \arctan \left( {\frac{1}{{2\sqrt 2 }}} \right) + k2\pi \\x = \frac{{3\pi }}{4} - \arctan \left( {\frac{1}{{2\sqrt 2 }}} \right) + k2\pi \end{array} \right.\].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Xét tam giác ABD và tam giác EBD có:
AB = BE(gt)
\(\widehat {ABD} = \widehat {EBD}\)(do BD là phân giác \(\widehat {ABD}\))
Cạnh BD chung
Suy ra ΔABD = ΔEBD (c−g−c).
b) Theo câu a) ta có ΔABD = ΔEBD(c−g−c)
Nên DE = AD (hai cạnh tương ứng) và \(\widehat {BED} = \widehat {BAD} = 90^\circ \)(hai góc tương ứng)
Do đó: DE ⊥ BC.
c) Gọi I là giao điểm của BD và AE.
Xét tam giác ABI và tam giác EBI có:
AB = BE (gt)
\(\widehat {ABD} = \widehat {EBD}\) (do BD là phân giác \(\widehat {ABD}\))
Cạnh BI chung
Suy ra ΔABI = ΔEBI (c−g−c).
⇒ IA = IE, \(\widehat {BIA} = \widehat {BIE}\)
Mà \(\widehat {BIA} + \widehat {BIE} = 180^\circ \)(hai góc kề bù)
Nên \(\widehat {BIA} = \widehat {BIE} = 90^\circ \)
Hay BI ⊥ AE
Từ đó ta có BD ⊥ AE tại I và I là trung điểm AE.
Suy ra BD là đường trung trực của đoạn AE.
d) Theo câu b) ta có AD = DE
Xét tam giác ADF và tam giác EDC có:
AD = DE(cmt)
\(\widehat {FAD} = \widehat {DEC} = 90^\circ \)
AF = CE(gt)
Suy ra ΔADF = ΔEDC (c−g−c)
⇒ \(\widehat {ADF} = \widehat {CDF}\)
Mà A, D, C thẳng hàng nên suy ra F, D, E thẳng hàng.
Lời giải
Không có công thức về cộng, trừ lũy thừa, ta thực hiện phép tính lũy thừa sau đó thực hiện cộng, trừ thông thường.
Ví dụ: 32 – 22 = 9 – 4 = 5
32 – 22 ≠ (3 – 2)2 = 1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.