Vẽ trên cùng một mặt phẳng tọa độ Oxy đồ thị của các hàm số sau:
y =\(\frac{{ - 1}}{2}x\) (d1) và y = \(\frac{1}{2}x\) + 3 (d2).
Xác định b để đường thẳng (d3) y = 2x + b cắt (d2) tại điểm có tung độ và hoành độ đối nhau.
Vẽ trên cùng một mặt phẳng tọa độ Oxy đồ thị của các hàm số sau:
y =\(\frac{{ - 1}}{2}x\) (d1) và y = \(\frac{1}{2}x\) + 3 (d2).
Xác định b để đường thẳng (d3) y = 2x + b cắt (d2) tại điểm có tung độ và hoành độ đối nhau.
Quảng cáo
Trả lời:
+) Vẽ đồ thị hàm số (d1): y = \(\frac{{ - 1}}{2}x\)
Với x = 0 ⇒ y = 0 ta có điểm (0;0)(
Với x = 2 ⇒ y = \(\frac{{ - 1}}{2}\).2 = −1 ta có điểm (2;−1)
Vẽ đường thẳng đi qua hai điểm (0;0);(2;−1) ta được (d1)
+) Vẽ đồ thị hàm số (d2):y =\(\frac{1}{2}x\)+ 3
Với x = 0 ⇒ y = 3 ta có điểm (0;3)
Với y = 0 ⇒\(\frac{1}{2}x\)+ 3 = 0 ⇒ x = −6 ta có điểm (−6;0)
Vẽ đường thẳng đi qua hai điểm (0;3);(−6;0) ta được (d2)

Phương trình hoành độ giao điểm của (d3): y = 2x + b và (d2): y =\(\frac{1}{2}x\)+ 3
2x + b = \(\frac{1}{2}x\)+ 3
⇔ \(\frac{3}{2}x = 3 - b\)
⇔ x = \(2 - \frac{2}{3}b\)
Thay x = \(2 - \frac{2}{3}b\) vào (d2) ta được: y = \(\frac{1}{2}\left( {2 - \frac{2}{3}b} \right) + 3 = 4 - \frac{1}{3}b\)
Vì giao điểm của (d2); (d3) có tung độ và hoành độ đối nhau
⇒ x + y = 0
⇔ \(2 - \frac{2}{3}b + 4 - \frac{1}{3}b = 0\)
⇔ –b = – 6
⇔ b = 6
Vậy b = 6.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Xét tam giác ABD và tam giác EBD có:
AB = BE(gt)
\(\widehat {ABD} = \widehat {EBD}\)(do BD là phân giác \(\widehat {ABD}\))
Cạnh BD chung
Suy ra ΔABD = ΔEBD (c−g−c).
b) Theo câu a) ta có ΔABD = ΔEBD(c−g−c)
Nên DE = AD (hai cạnh tương ứng) và \(\widehat {BED} = \widehat {BAD} = 90^\circ \)(hai góc tương ứng)
Do đó: DE ⊥ BC.
c) Gọi I là giao điểm của BD và AE.
Xét tam giác ABI và tam giác EBI có:
AB = BE (gt)
\(\widehat {ABD} = \widehat {EBD}\) (do BD là phân giác \(\widehat {ABD}\))
Cạnh BI chung
Suy ra ΔABI = ΔEBI (c−g−c).
⇒ IA = IE, \(\widehat {BIA} = \widehat {BIE}\)
Mà \(\widehat {BIA} + \widehat {BIE} = 180^\circ \)(hai góc kề bù)
Nên \(\widehat {BIA} = \widehat {BIE} = 90^\circ \)
Hay BI ⊥ AE
Từ đó ta có BD ⊥ AE tại I và I là trung điểm AE.
Suy ra BD là đường trung trực của đoạn AE.
d) Theo câu b) ta có AD = DE
Xét tam giác ADF và tam giác EDC có:
AD = DE(cmt)
\(\widehat {FAD} = \widehat {DEC} = 90^\circ \)
AF = CE(gt)
Suy ra ΔADF = ΔEDC (c−g−c)
⇒ \(\widehat {ADF} = \widehat {CDF}\)
Mà A, D, C thẳng hàng nên suy ra F, D, E thẳng hàng.
Lời giải
Không có công thức về cộng, trừ lũy thừa, ta thực hiện phép tính lũy thừa sau đó thực hiện cộng, trừ thông thường.
Ví dụ: 32 – 22 = 9 – 4 = 5
32 – 22 ≠ (3 – 2)2 = 1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.