Câu hỏi:

18/08/2023 2,261

Cho tam giác ABC vuông tại A có \(\widehat C = 30^\circ \). Gọi M và N lần lượt là trung điểm của BC và AC.

a) Tính \(\widehat {NMC}\).

b) Gọi E là điểm đối xứng với M qua N. Chứng minh tứ giác AECM là hình thoi.

c)Lấy D là điểm đối xứng với E qua BC. Tứ giác ACDB là hình gì? Tại sao?

d) Tam giác ABC có điều kiện gì thì tứ giác AECM là hình vuông?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC vuông tại A có góc C = 30 độ. Gọi M và N lần lượt là  (ảnh 1)

a. Ta có: \(\widehat C = 30^\circ ;\widehat A = 90^\circ \)

Suy ra: \(\widehat B = 90^\circ - \widehat C = 60^\circ \)

Vì M, N là trung điểm BC, AC 

MN // AB

\(\widehat {NMC} = \widehat B = 60^\circ \)

b. Ta có MN // AB, M là trung điểm BC 

N là trung điểm AC

ME AC = N

N là trung điểm mỗi đường 

AECM là hình thoi

c. Ta có E,D đối xứng qua BC

BE = BD, \(\widehat {BCD} = \widehat {ECB}\)

Vì AECM là hình thoi 

\(\widehat {ECB} = 2\widehat {ACB} = 60^\circ \)

\(\widehat {BCD} = 60^\circ \)

\(\widehat {ACD} = \widehat {ACB} + \widehat {BCD} = 30^\circ + 60^\circ = 90^\circ \)

\(\widehat {ACD} = 90^\circ \)

CD AC

AB // DC vì ABAC

Mà CD = CE = MA = AB (do ΔABM đều)

ABDC là hình  bình hành

Do AC CD ABDC là hình chữ nhật

d. Để AECM là hình vuông 

AM MC

ΔABC vuông cân tại A.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC vuông tại A. Kẻ BD là tia phân giác của góc ABC (D thuộc AC) (ảnh 1)

a) Xét tam giác ABD và tam giác EBD có:

AB = BE(gt)

\(\widehat {ABD} = \widehat {EBD}\)(do BD là phân giác \(\widehat {ABD}\))

Cạnh BD chung

Suy ra ΔABD = ΔEBD (c−g−c).

b) Theo câu a) ta có ΔABD = ΔEBD(c−g−c)

Nên DE = AD (hai cạnh tương ứng) và \(\widehat {BED} = \widehat {BAD} = 90^\circ \)(hai góc tương ứng)

Do đó: DE BC.

c)  Gọi  I là giao điểm của BD và AE.

Xét tam giác ABI và tam giác EBI có:

AB = BE (gt)

\(\widehat {ABD} = \widehat {EBD}\) (do BD là phân giác \(\widehat {ABD}\))

Cạnh BI chung

Suy ra ΔABI = ΔEBI (c−g−c).

IA = IE, \(\widehat {BIA} = \widehat {BIE}\)

Mà \(\widehat {BIA} + \widehat {BIE} = 180^\circ \)(hai góc kề bù)

Nên \(\widehat {BIA} = \widehat {BIE} = 90^\circ \)

Hay BI AE

Từ đó ta có BD AE tại I và I là trung điểm AE.

Suy ra BD là đường trung trực của đoạn AE.

d) Theo câu b) ta có AD = DE

Xét tam giác ADF và tam giác EDC có:

AD = DE(cmt)

\(\widehat {FAD} = \widehat {DEC} = 90^\circ \)

AF = CE(gt)

Suy ra ΔADF = ΔEDC (c−g−c)

\(\widehat {ADF} = \widehat {CDF}\)

Mà A, D, C thẳng hàng nên suy ra F, D, E thẳng hàng.

Lời giải

Không có công thức về cộng, trừ lũy thừa, ta thực hiện phép tính lũy thừa sau đó thực hiện cộng, trừ thông thường.

Ví dụ: 32 – 22 = 9 – 4 = 5

32 – 22 ≠ (3 – 2)2 = 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay