Câu hỏi:
18/08/2023 227Từ điểm I nằm ngoài đường tròn (O), vẽ cát tuyến cắt đường tròn tại A và B (IA < IB). Các tiếp tuyến tại A và B cắt nhau tại M. OM cắt AB tại K.
a) Chứng minh K là trung điểm của AB.
b) Vẽ MH ⊥ OI tại H. Chứng minh OB2 = OH.OI.
c) Gọi N là giao điểm của AB và MH. Chứng minh IA.IB = IK.IN.
Sách mới 2k7: Sổ tay Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 30k).
Quảng cáo
Trả lời:
a) Ta có MA, MB là hai tiếp tuyến của (O) cắt nhau tại M.
Suy ra MA = MB.
Khi đó M nằm trên đường trung trực của đoạn thẳng AB (1)
Lại có OA = OB = R.
Suy ra O nằm trên đường trung trực của đoạn thẳng AB (2)
Từ (1), (2), suy ra MO là đường trung trực của đoạn thẳng AB.
Do đó MO ⊥ AB tại K và K là trung điểm AB.
b) Xét ∆OHM và ∆OKI, có:
\(\widehat O\) chung.
\(\widehat {OHM} = \widehat {OKI} = 90^\circ \)
Do đó ∆OHM ∽ ∆OKI (g.g).
Suy ra \(\frac{{OH}}{{OK}} = \frac{{OM}}{{OI}}\)
Do đó OH.OI = OM.OK.
Xét ∆AOM vuông tại A có AK là đường cao:
OA2 = OK.OM (hệ thức lượng trong tam giác vuông).
Vậy OH.OI = OA2 = OB2 (điều phải chứng minh).
c) Ta có \(\widehat {OAM} = 90^\circ \)(giả thiết)
Suy ra O, A, M nội tiếp đường tròn đường kính OM.
Tương tự, ta có O, H, M nội tiếp đường tròn đường kính OM.
Khi đó tứ giác AHOM nội tiếp đường tròn đường kính OM.
Suy ra \(\widehat {AMO} = \widehat {AHI}\) (1)
Ta có \(\widehat {OAM} = \widehat {OBM} = 90^\circ \)(MA, MB là các tiếp tuyến của đường tròn (O)).
Suy ra \(\widehat {OAM} + \widehat {OBM} = 90^\circ + 90^\circ = 180^\circ \)
Do đó tứ giác OAMB nội tiếp đường tròn đường kính OM.
Vì vậy \(\widehat {AMO} = \widehat {ABO}\)(2)
Từ (1), (2), suy ra \(\widehat {ABO} = \widehat {AHI}\)
Xét ∆IHN và ∆IKO, có:
\(\widehat I\)chung.
\(\widehat {IHN} = \widehat {IKO} = 90^\circ \)
Do đó: ∆IHN ∽ ∆IKO (g.g).
Suy ra \(\frac{{IH}}{{IK}} = \frac{{IN}}{{IO}}\)
Do đó IH.IO = IN.IK (3)
Xét ∆AHI và ∆OBI, có:
\(\widehat I\) chung.
\(\widehat {ABO} = \widehat {AHI}\)(chứng minh trên).
Do đó ∆AHI ~ ∆OBI (g.g).
Suy ra \(\frac{{IA}}{{IO}} = \frac{{IH}}{{IB}}\)
Do đó IA.IB = IH.IO (4)
Từ (3), (4), suy ra IA.IB = IN.IK (điều phải chứng minh).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ΔABC vuông tại A. Kẻ BD là tia phân giác của \(\widehat {ABC}\)(D ∈ AC). Trên cạnh BC lấy điểm E sao cho BE = BA.
a) Chứng minh ΔABD = ΔEBD.
b) Chứng minh: DE = AD và DE vuông góc với BC.
c) Chứng minh: BD là đường trung trực của đoạn AE.
d) Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh ba điểm F, D, E thẳng hàng.
Câu 3:
Một cửa hàng nhập về 50 chiếc túi xách với giá góc 150 000 đồng/cái. Cửa hàng đã bán 30 chiếc với giá mỗi chiếc lãi 30% so với giá gốc, 20 chiếc còn lại bán lỗ 5% so với giá gốc. Hỏi sau khi bán hết 50 chiếc túi xách cửa hàng đó lãi hay lỗ bao nhiêu tiền?
Câu 5:
Trên cùng phía của đường thẳng xy, vẽ 2 đường thằng AH và BK, sao cho AH vuông góc với xy ở H, BK vuông góc với xy ở K và BK = AH. Gọi O là trung điểm của đoạn HK. Chứng minh: \(\widehat {AOH} = \widehat {BOK}\).
Câu 6:
Có 3 bì thư giống nhau lần lượt được đánh số thứ tự từ 1 đến 3 và 3 con tem giống nhau lần lượt đánh số thứ tự từ 1 đến 3. Dán 3 con tem đó vào 3 bì thư sao cho không có bì thư nào không có tem. Tính xác suất để lấy ra được 2 bì thư trong 3 bì thư trên sao cho mỗi bì thư đều có số thứ tự giống với số thứ tự con tem đã dán vào nó.
Câu 7:
Cho tam giác ABC có AB = 2, AC = 3, \(\widehat A = 60^\circ \). Tính độ dài phân giác góc A?
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
về câu hỏi!