Mua ngẫu nhiên 1 tờ vé số có 6 chữ số. Tính xác suất trong các trường hợp sau:
a) Trúng giải tám (quay 1 lần, với 2 chữ số cuối cùng của tờ vé số khớp với 2 chữ số quay được.
b) Trúng giải khuyến khích cho các vé có 5 chữ số cuối cùng liên tiếp theo hàng thứ tự của giải đặc biệt.
Mua ngẫu nhiên 1 tờ vé số có 6 chữ số. Tính xác suất trong các trường hợp sau:
a) Trúng giải tám (quay 1 lần, với 2 chữ số cuối cùng của tờ vé số khớp với 2 chữ số quay được.
b) Trúng giải khuyến khích cho các vé có 5 chữ số cuối cùng liên tiếp theo hàng thứ tự của giải đặc biệt.
Quảng cáo
Trả lời:

Gọi số trên tờ vé số là \(\overline {abcdef} \)
mỗi chữ số có 10 cách chọn nên n(Ω) = 106
a) Để trúng giải 8
Suy ra: \(\overline {ef} \) trùng với 2 chữ số quay được nên có 1 cách
4 số còn lại mỗi số có 10 cách chọn, nên 4 số có 104 cách chọn
Vậy xác suất là: P = \(\frac{{{{10}^4}}}{{{{10}^6}}} = \frac{1}{{{{10}^2}}} = \frac{1}{{100}} = 0,01\)
b) Để trúng giải khuyến khích
Suy ra: \(\overline {bcdef} \) trùng với 5 chữ số quay được nên có 1 cách
Số còn lại có 10 cách chọn.
Vậy xác suất là: P = \(\frac{{10}}{{{{10}^6}}} = \frac{1}{{{{10}^5}}}\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Xét tam giác ABD và tam giác EBD có:
AB = BE(gt)
\(\widehat {ABD} = \widehat {EBD}\)(do BD là phân giác \(\widehat {ABD}\))
Cạnh BD chung
Suy ra ΔABD = ΔEBD (c−g−c).
b) Theo câu a) ta có ΔABD = ΔEBD(c−g−c)
Nên DE = AD (hai cạnh tương ứng) và \(\widehat {BED} = \widehat {BAD} = 90^\circ \)(hai góc tương ứng)
Do đó: DE ⊥ BC.
c) Gọi I là giao điểm của BD và AE.
Xét tam giác ABI và tam giác EBI có:
AB = BE (gt)
\(\widehat {ABD} = \widehat {EBD}\) (do BD là phân giác \(\widehat {ABD}\))
Cạnh BI chung
Suy ra ΔABI = ΔEBI (c−g−c).
⇒ IA = IE, \(\widehat {BIA} = \widehat {BIE}\)
Mà \(\widehat {BIA} + \widehat {BIE} = 180^\circ \)(hai góc kề bù)
Nên \(\widehat {BIA} = \widehat {BIE} = 90^\circ \)
Hay BI ⊥ AE
Từ đó ta có BD ⊥ AE tại I và I là trung điểm AE.
Suy ra BD là đường trung trực của đoạn AE.
d) Theo câu b) ta có AD = DE
Xét tam giác ADF và tam giác EDC có:
AD = DE(cmt)
\(\widehat {FAD} = \widehat {DEC} = 90^\circ \)
AF = CE(gt)
Suy ra ΔADF = ΔEDC (c−g−c)
⇒ \(\widehat {ADF} = \widehat {CDF}\)
Mà A, D, C thẳng hàng nên suy ra F, D, E thẳng hàng.
Lời giải
Không có công thức về cộng, trừ lũy thừa, ta thực hiện phép tính lũy thừa sau đó thực hiện cộng, trừ thông thường.
Ví dụ: 32 – 22 = 9 – 4 = 5
32 – 22 ≠ (3 – 2)2 = 1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.