Cho tam giác ABC có AB = 4, AC = 6 và \(\widehat {BAC} = 60^\circ \). Gọi M là trung điển của BC, điểm N thỏa mãn \(\overrightarrow {AN} = \frac{7}{{12}}\overrightarrow {AC} \). Chứng minh AM vuông góc BN.
Cho tam giác ABC có AB = 4, AC = 6 và \(\widehat {BAC} = 60^\circ \). Gọi M là trung điển của BC, điểm N thỏa mãn \(\overrightarrow {AN} = \frac{7}{{12}}\overrightarrow {AC} \). Chứng minh AM vuông góc BN.
Quảng cáo
Trả lời:
\(\overrightarrow {AM} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) = \frac{1}{2}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AC} \)
\(\overrightarrow {BN} = \overrightarrow {AN} - \overrightarrow {AB} = \frac{7}{{12}}\overrightarrow {AC} - \overrightarrow {AB} \)
\(\overrightarrow {AM} .\overrightarrow {BN} = \left( {\frac{1}{2}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AC} } \right)\left( {\frac{7}{{12}}\overrightarrow {AC} - \overrightarrow {AB} } \right)\)
\( = \frac{7}{{24}}\overrightarrow {AB} .\overrightarrow {AC} + \frac{7}{{24}}A{C^2} - \frac{1}{2}A{B^2} - \frac{1}{2}\overrightarrow {AB} .\overrightarrow {AC} \)
\( = \frac{{ - 5}}{{24}}\overrightarrow {AB} .\overrightarrow {AC} + \frac{7}{{24}}A{C^2} - \frac{1}{2}A{B^2}\)
\( = \frac{{ - 5}}{{24}}AB.AC.\cos \widehat A + \frac{7}{{24}}A{C^2} - \frac{1}{2}A{B^2}\)
\( = \frac{{ - 5}}{{24}}.4.6.\cos 60^\circ + \frac{7}{{24}}{.6^2} - \frac{1}{2}{.4^2}\)
= 0
Vậy AM vuông góc BN.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Xét tam giác ABD và tam giác EBD có:
AB = BE(gt)
\(\widehat {ABD} = \widehat {EBD}\)(do BD là phân giác \(\widehat {ABD}\))
Cạnh BD chung
Suy ra ΔABD = ΔEBD (c−g−c).
b) Theo câu a) ta có ΔABD = ΔEBD(c−g−c)
Nên DE = AD (hai cạnh tương ứng) và \(\widehat {BED} = \widehat {BAD} = 90^\circ \)(hai góc tương ứng)
Do đó: DE ⊥ BC.
c) Gọi I là giao điểm của BD và AE.
Xét tam giác ABI và tam giác EBI có:
AB = BE (gt)
\(\widehat {ABD} = \widehat {EBD}\) (do BD là phân giác \(\widehat {ABD}\))
Cạnh BI chung
Suy ra ΔABI = ΔEBI (c−g−c).
⇒ IA = IE, \(\widehat {BIA} = \widehat {BIE}\)
Mà \(\widehat {BIA} + \widehat {BIE} = 180^\circ \)(hai góc kề bù)
Nên \(\widehat {BIA} = \widehat {BIE} = 90^\circ \)
Hay BI ⊥ AE
Từ đó ta có BD ⊥ AE tại I và I là trung điểm AE.
Suy ra BD là đường trung trực của đoạn AE.
d) Theo câu b) ta có AD = DE
Xét tam giác ADF và tam giác EDC có:
AD = DE(cmt)
\(\widehat {FAD} = \widehat {DEC} = 90^\circ \)
AF = CE(gt)
Suy ra ΔADF = ΔEDC (c−g−c)
⇒ \(\widehat {ADF} = \widehat {CDF}\)
Mà A, D, C thẳng hàng nên suy ra F, D, E thẳng hàng.
Lời giải
Không có công thức về cộng, trừ lũy thừa, ta thực hiện phép tính lũy thừa sau đó thực hiện cộng, trừ thông thường.
Ví dụ: 32 – 22 = 9 – 4 = 5
32 – 22 ≠ (3 – 2)2 = 1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.