Câu hỏi:

18/08/2023 255

Cho tam giác ABC. Gọi O là một điểm thuộc miền trong tam giác. Gọi M, N, P, Q lần lượt là trung điểm của OB, OC, AC, AB.

a) Chứng minh MNPQ là hình bình hành.

b) Xác định vị trí O để MNPQ là hình chữ nhật.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC. Gọi O là một điểm thuộc miền trong tam giác. Gọi M, N, P, Q (ảnh 1)

a) Ta có: M, N là trung điểm OB, OC nên MN là đường trung bình của tam giác OBC

Suy ra: MN // BC và MN = \(\frac{1}{2}BC\)(1)

Lại có: Q, P là trung điểm AB, AC nên QP là đường trung bình của tam giác ABC.

Suy ra: QP // BC và QP = \(\frac{1}{2}BC\) (2)

Từ (1) và (2) ta có: MN // QP và MN = QP

Suy ra: MNPQ là hình bình hành.

b) Để MNPQ là hình chữ nhật thì QM vuông góc QP (3)

Mà ta có: QP // BC (4)

QM là đường trung bình của tam giác ABO nên QM // AO (5)

Từ (3), (4) và (5) suy ra: OA vuông góc với BC

Hay O thuộc đường thẳng đi qua A và vuông góc với BC thì MNPQ là hình chữ nhật.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho ΔABC vuông tại A. Kẻ BD là tia phân giác của \(\widehat {ABC}\)(D AC). Trên cạnh BC lấy điểm E sao cho BE = BA.

a) Chứng minh ΔABD = ΔEBD.

b) Chứng minh: DE = AD và DE vuông góc với BC.

c) Chứng minh: BD là đường trung trực của đoạn AE.

d) Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh ba điểm F, D, E thẳng hàng.

Xem đáp án » 18/08/2023 84,288

Câu 2:

Phép cộng, trừ 2 số cùng số mũ.

Xem đáp án » 18/08/2023 23,503

Câu 3:

Một cửa hàng nhập về 50 chiếc túi xách với giá góc 150 000 đồng/cái. Cửa hàng đã bán 30 chiếc với giá mỗi chiếc lãi 30% so với giá gốc, 20 chiếc còn lại bán lỗ 5% so với giá gốc. Hỏi sau khi bán hết 50 chiếc túi xách cửa hàng đó lãi hay lỗ bao nhiêu tiền?

Xem đáp án » 18/08/2023 12,833

Câu 4:

Tích các nghiệm của phương trình: logx(125x) . log252x = 1?

Xem đáp án » 12/07/2024 11,864

Câu 5:

Có 3 bì thư giống nhau lần lượt được đánh số thứ tự từ 1 đến 3 và 3 con tem giống nhau lần lượt đánh số thứ tự từ 1 đến 3. Dán 3 con tem đó vào 3 bì thư sao cho không có bì thư nào không có tem. Tính xác suất để lấy ra được 2 bì thư trong 3 bì thư trên sao cho mỗi bì thư đều có số thứ tự giống với số thứ tự con tem đã dán vào nó.

Xem đáp án » 18/08/2023 11,225

Câu 6:

Trên cùng phía của đường thẳng xy, vẽ 2 đường thằng AH và BK, sao cho AH vuông góc với xy ở H, BK vuông góc với xy ở K và BK = AH. Gọi O là trung điểm của đoạn HK. Chứng minh: \(\widehat {AOH} = \widehat {BOK}\).

Xem đáp án » 18/08/2023 10,344

Câu 7:

Cho điểm M nằm ngoài đường tròn (O;R). Từ M kẻ các tiếp tuyến MA, MB tới đường tròn tâm O (A, B là các tiếp điểm). Gọi H là giao điểm của MO với AB. Kẻ đường kính AD của đường tròn (O), MD cắt đường tròn (O) tại điểm thứ hai là C. Chứng minh rằng \(\widehat {MHC} = \widehat {ADC}\).

Xem đáp án » 18/08/2023 8,453