Câu hỏi:

18/08/2023 1,636

Cho tam giác ABC vuông ở A, đường cao AH. Kẻ HD vuông góc với AB và HE vuông góc với AC (D trên AB, E trên AC). Gọi O là giao điểm của AH và DE.

a) Chứng minh AH = DE.

b) Gọi P và Q lần lượt là trung điểm của BH và HC. Chứng minh tứ giác DEQP là hình thang vuông.

c) Chứng minh O là trực tâm của tam giác ABQ.

d) Chứng minh SABC = 2SDEQP.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC vuông ở A, đường cao AH. Kẻ HD vuông góc với AB và HE vuông (ảnh 1)

a) Xét tứ giác ADHE có 3 góc vuông (\(\widehat A,\widehat D,\widehat E\))

ADHE là hình chữ nhật mà AH, DE là 2 đường chéo

AH = DE (đpcm)

b) HD AB và AC AB HD // AC 

 \(\widehat {PHD} = \widehat {HCA}\)(đồng vị) 

ΔDBH vuông tại D có DP là trung tuyến ứng với cạnh huyền

DP = PH ΔDPH cân tại P

 \(\widehat {PHD} = \widehat {PDH}\)

ADHE là hình chữ nhật  \(\widehat {ADE} = \widehat {AHE}\)

mà \(\widehat {HCA} = \widehat {AHE}\) (cùng phụ với \(\widehat {HAE}\))

 \(\widehat {ADE} = \widehat {HCA} = \widehat {PHD} = \widehat {PDH}\)

Ta có: \(\widehat {ADE} + \widehat {EDH} = 90^\circ \)

 \(\widehat {PDH} + \widehat {EDH} = 90^\circ \)

 \(\widehat {PDE} = 90^\circ \)  DP DE

Chứng minh tương tự ta có EQ DE

Tứ giác DEQP là hình thang vuông tại D và E (đpcm)

c) Xét ΔHAC có O là trung điểm của HA, Q là trung điểm của HC

OQ là đường trung bình OQ // AC OQ AB

Xét ΔABQ có QO, AH là 2 đường cao cắt nhau tại O

O là trực tâm ΔABQ (đpcm)

d) SABC = \(\frac{1}{2}.AH.BC = PQ.AH\left( 1 \right)\)

SDEQP = \(\frac{1}{2}\left( {DP + EQ} \right).DE = \frac{1}{2}.\left( {DP + EQ} \right).AH = \frac{1}{2}.\left( {HP + HQ} \right).AH = \frac{1}{2}.PQ.AH\) (2)

Từ (1) và (2) suy ra: SABC = 2SDEQP (đpcm).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho ΔABC vuông tại A. Kẻ BD là tia phân giác của \(\widehat {ABC}\)(D AC). Trên cạnh BC lấy điểm E sao cho BE = BA.

a) Chứng minh ΔABD = ΔEBD.

b) Chứng minh: DE = AD và DE vuông góc với BC.

c) Chứng minh: BD là đường trung trực của đoạn AE.

d) Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh ba điểm F, D, E thẳng hàng.

Xem đáp án » 18/08/2023 84,565

Câu 2:

Phép cộng, trừ 2 số cùng số mũ.

Xem đáp án » 18/08/2023 23,534

Câu 3:

Một cửa hàng nhập về 50 chiếc túi xách với giá góc 150 000 đồng/cái. Cửa hàng đã bán 30 chiếc với giá mỗi chiếc lãi 30% so với giá gốc, 20 chiếc còn lại bán lỗ 5% so với giá gốc. Hỏi sau khi bán hết 50 chiếc túi xách cửa hàng đó lãi hay lỗ bao nhiêu tiền?

Xem đáp án » 18/08/2023 12,835

Câu 4:

Tích các nghiệm của phương trình: logx(125x) . log252x = 1?

Xem đáp án » 12/07/2024 11,885

Câu 5:

Có 3 bì thư giống nhau lần lượt được đánh số thứ tự từ 1 đến 3 và 3 con tem giống nhau lần lượt đánh số thứ tự từ 1 đến 3. Dán 3 con tem đó vào 3 bì thư sao cho không có bì thư nào không có tem. Tính xác suất để lấy ra được 2 bì thư trong 3 bì thư trên sao cho mỗi bì thư đều có số thứ tự giống với số thứ tự con tem đã dán vào nó.

Xem đáp án » 18/08/2023 11,333

Câu 6:

Trên cùng phía của đường thẳng xy, vẽ 2 đường thằng AH và BK, sao cho AH vuông góc với xy ở H, BK vuông góc với xy ở K và BK = AH. Gọi O là trung điểm của đoạn HK. Chứng minh: \(\widehat {AOH} = \widehat {BOK}\).

Xem đáp án » 18/08/2023 10,365

Câu 7:

Cho điểm M nằm ngoài đường tròn (O;R). Từ M kẻ các tiếp tuyến MA, MB tới đường tròn tâm O (A, B là các tiếp điểm). Gọi H là giao điểm của MO với AB. Kẻ đường kính AD của đường tròn (O), MD cắt đường tròn (O) tại điểm thứ hai là C. Chứng minh rằng \(\widehat {MHC} = \widehat {ADC}\).

Xem đáp án » 18/08/2023 8,460