Câu hỏi:

18/08/2023 1,570

Cho tam giác ABC vuông ở A, đường cao AH. Kẻ HD vuông góc với AB và HE vuông góc với AC (D trên AB, E trên AC). Gọi O là giao điểm của AH và DE.

a) Chứng minh AH = DE.

b) Gọi P và Q lần lượt là trung điểm của BH và HC. Chứng minh tứ giác DEQP là hình thang vuông.

c) Chứng minh O là trực tâm của tam giác ABQ.

d) Chứng minh SABC = 2SDEQP.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC vuông ở A, đường cao AH. Kẻ HD vuông góc với AB và HE vuông (ảnh 1)

a) Xét tứ giác ADHE có 3 góc vuông (\(\widehat A,\widehat D,\widehat E\))

ADHE là hình chữ nhật mà AH, DE là 2 đường chéo

AH = DE (đpcm)

b) HD AB và AC AB HD // AC 

 \(\widehat {PHD} = \widehat {HCA}\)(đồng vị) 

ΔDBH vuông tại D có DP là trung tuyến ứng với cạnh huyền

DP = PH ΔDPH cân tại P

 \(\widehat {PHD} = \widehat {PDH}\)

ADHE là hình chữ nhật  \(\widehat {ADE} = \widehat {AHE}\)

mà \(\widehat {HCA} = \widehat {AHE}\) (cùng phụ với \(\widehat {HAE}\))

 \(\widehat {ADE} = \widehat {HCA} = \widehat {PHD} = \widehat {PDH}\)

Ta có: \(\widehat {ADE} + \widehat {EDH} = 90^\circ \)

 \(\widehat {PDH} + \widehat {EDH} = 90^\circ \)

 \(\widehat {PDE} = 90^\circ \)  DP DE

Chứng minh tương tự ta có EQ DE

Tứ giác DEQP là hình thang vuông tại D và E (đpcm)

c) Xét ΔHAC có O là trung điểm của HA, Q là trung điểm của HC

OQ là đường trung bình OQ // AC OQ AB

Xét ΔABQ có QO, AH là 2 đường cao cắt nhau tại O

O là trực tâm ΔABQ (đpcm)

d) SABC = \(\frac{1}{2}.AH.BC = PQ.AH\left( 1 \right)\)

SDEQP = \(\frac{1}{2}\left( {DP + EQ} \right).DE = \frac{1}{2}.\left( {DP + EQ} \right).AH = \frac{1}{2}.\left( {HP + HQ} \right).AH = \frac{1}{2}.PQ.AH\) (2)

Từ (1) và (2) suy ra: SABC = 2SDEQP (đpcm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho ΔABC vuông tại A. Kẻ BD là tia phân giác của \(\widehat {ABC}\)(D AC). Trên cạnh BC lấy điểm E sao cho BE = BA.

a) Chứng minh ΔABD = ΔEBD.

b) Chứng minh: DE = AD và DE vuông góc với BC.

c) Chứng minh: BD là đường trung trực của đoạn AE.

d) Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh ba điểm F, D, E thẳng hàng.

Xem đáp án » 18/08/2023 45,906

Câu 2:

Phép cộng, trừ 2 số cùng số mũ.

Xem đáp án » 18/08/2023 19,083

Câu 3:

Một cửa hàng nhập về 50 chiếc túi xách với giá góc 150 000 đồng/cái. Cửa hàng đã bán 30 chiếc với giá mỗi chiếc lãi 30% so với giá gốc, 20 chiếc còn lại bán lỗ 5% so với giá gốc. Hỏi sau khi bán hết 50 chiếc túi xách cửa hàng đó lãi hay lỗ bao nhiêu tiền?

Xem đáp án » 18/08/2023 11,842

Câu 4:

Tích các nghiệm của phương trình: logx(125x) . log252x = 1?

Xem đáp án » 12/07/2024 8,318

Câu 5:

Có 3 bì thư giống nhau lần lượt được đánh số thứ tự từ 1 đến 3 và 3 con tem giống nhau lần lượt đánh số thứ tự từ 1 đến 3. Dán 3 con tem đó vào 3 bì thư sao cho không có bì thư nào không có tem. Tính xác suất để lấy ra được 2 bì thư trong 3 bì thư trên sao cho mỗi bì thư đều có số thứ tự giống với số thứ tự con tem đã dán vào nó.

Xem đáp án » 18/08/2023 8,000

Câu 6:

Cho tam giác ABC có AB = 2, AC = 3, \(\widehat A = 60^\circ \). Tính độ dài phân giác góc A?

Xem đáp án » 18/08/2023 7,707

Câu 7:

Một người thợ mộc làm những cái bàn và những cái ghế. Mỗi cái bàn khi bán lãi 150 nghìn đồng, mỗi cái ghế khi bán lãi 50 nghìn đồng. Người thợ mộc có thể làm 40 giờ/tuần và tốn 6h làm 1 cái bàn, 3h làm 1 cái ghế. Khách hàng yêu cầu người thợ mộc làm số ghế ít nhất là gấp 3 lần số bàn. Một cái bàn chiếm chỗ bằng 3 cái ghế và ta có phòng để được nhiều nhất 4 cái bàn/tuần. Hỏi người thợ mộc phải sản xuất như nào để có tiền lãi thu về là lớn nhất.

Xem đáp án » 12/07/2024 7,328

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store