Câu hỏi:

18/08/2023 1,000 Lưu

Cho đường tròn (O;R) và điểm A cố định ngoài đường tròn. Vẽ đường thẳng d vuông góc với OA tại A. Trên d lấy M. Qua M kẻ tiếp tuyến ME, MF với (O). Nối EF cắt OM tại H, cắt OA tại B. Chứng minh:
a) Tứ giác ABHM nội tiếp.
b) OA.OB = OH.OM = R2.
c) Tâm I của đường tròn nội tiếp tam giác MEF thuộc một đường tròn cố định khi M di chuyển trên d.
d) Tìm vị trí của M để diện tích tam giác HBO lớn nhất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho đường tròn (O;R) và điểm A cố định ngoài đường tròn. Vẽ đường thẳng d vuông (ảnh 1)

a) Do ME, MF là tiếp tuyến với đường tròn suy ra EF OM

Tứ giác ABHM có \(\widehat A = \widehat H = 90^\circ \) nên tứ giác này nội tiếp đường tròn bán kính MB.

b) Xét ΔOHB và ΔOAM có:

Chung \(\widehat O\)

\(\widehat {OHB} = \widehat {OAM} = 90^\circ \)

ΔOHB ΔOAM (g.g)

\(\frac{{OH}}{{OA}} = \frac{{OB}}{{AM}}\)

OA.OB = OH.OM(1)

Tương tự: ΔOHE ΔOEM (g.g)

\(\frac{{OH}}{{OE}} = \frac{{OE}}{{OM}}\)

OH.OM = OE2 = R2

OH.OM = R2 (2)

Từ (1) và (2) suy ra: OA.OB = OH.OM = R2

c) Gọi I là giao điểm của OM với đường tròn (O). Nối FI.

Do  suy ra \(\widehat {MFI} = \widehat {EFI}\)

Suy ra FI là phân giác của góc \(\widehat {MFE}\)

Lại có MI là phân giác của góc \(\widehat {EMF}\)

Do đó I là giao điểm của đường phân giác trong của tam giác MEF

 I là tâm đường tròn nội tiếp tam giác MEF.

Mà I thuộc đường tròn (O) cố định. Suy ra đpcm.

d) Diện tích tam giác HBO: SHBO = \(\frac{1}{2}HO.HB\)

Xét ΔOHB ΔOAM (g.g)

\(\frac{{HB}}{{AM}} = \frac{{OB}}{{OM}}\)

HB.OM = AM.OB (3)

Có: OH.OM = R2(4)

Nhân (3) và (4) vế với vế ta được: OH.HB.OM2 = R2.AM.OB = R2 . AM . \(\frac{{{R^2}}}{{OA}}\)

OH.HB = \({R^4}.\frac{{AM}}{{OA.O{M^2}}} = {R^4}.\frac{{AM}}{{OA.\left( {O{A^2} + A{M^2}} \right)}}\)

Áp dụng BĐT Cô si với OA và AM ta có: \(O{A^2} + A{M^2} \ge 2\sqrt {O{A^2}.A{M^2}} = 2.OA.AM\)

Dấu "=" xảy ra khi: OA = AM

OH.HB ≤ \({R^2}.\frac{{AM}}{{OA.2.OA.AM}} = \frac{{{R^2}}}{{4.O{A^2}}}\)

Suy ra: Smax = \(\frac{{{R^2}}}{{4.O{A^2}}}\) khi OA = AM.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC vuông tại A. Kẻ BD là tia phân giác của góc ABC (D thuộc AC) (ảnh 1)

a) Xét tam giác ABD và tam giác EBD có:

AB = BE(gt)

\(\widehat {ABD} = \widehat {EBD}\)(do BD là phân giác \(\widehat {ABD}\))

Cạnh BD chung

Suy ra ΔABD = ΔEBD (c−g−c).

b) Theo câu a) ta có ΔABD = ΔEBD(c−g−c)

Nên DE = AD (hai cạnh tương ứng) và \(\widehat {BED} = \widehat {BAD} = 90^\circ \)(hai góc tương ứng)

Do đó: DE BC.

c)  Gọi  I là giao điểm của BD và AE.

Xét tam giác ABI và tam giác EBI có:

AB = BE (gt)

\(\widehat {ABD} = \widehat {EBD}\) (do BD là phân giác \(\widehat {ABD}\))

Cạnh BI chung

Suy ra ΔABI = ΔEBI (c−g−c).

IA = IE, \(\widehat {BIA} = \widehat {BIE}\)

Mà \(\widehat {BIA} + \widehat {BIE} = 180^\circ \)(hai góc kề bù)

Nên \(\widehat {BIA} = \widehat {BIE} = 90^\circ \)

Hay BI AE

Từ đó ta có BD AE tại I và I là trung điểm AE.

Suy ra BD là đường trung trực của đoạn AE.

d) Theo câu b) ta có AD = DE

Xét tam giác ADF và tam giác EDC có:

AD = DE(cmt)

\(\widehat {FAD} = \widehat {DEC} = 90^\circ \)

AF = CE(gt)

Suy ra ΔADF = ΔEDC (c−g−c)

\(\widehat {ADF} = \widehat {CDF}\)

Mà A, D, C thẳng hàng nên suy ra F, D, E thẳng hàng.

Lời giải

Không có công thức về cộng, trừ lũy thừa, ta thực hiện phép tính lũy thừa sau đó thực hiện cộng, trừ thông thường.

Ví dụ: 32 – 22 = 9 – 4 = 5

32 – 22 ≠ (3 – 2)2 = 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP