Câu hỏi:
13/07/2024 364
Gọi x0 là nghiệm âm lớn nhất của \[\sin 9x + \sqrt 3 \cos 7x = \sin 7x + \sqrt 3 \cos 9x\]. Tìm x0?
Gọi x0 là nghiệm âm lớn nhất của \[\sin 9x + \sqrt 3 \cos 7x = \sin 7x + \sqrt 3 \cos 9x\]. Tìm x0?
Quảng cáo
Trả lời:
\[\sin 9x + \sqrt 3 \cos 7x = \sin 7x + \sqrt 3 \cos 9x\]
⇔ \[\sin 9x - \sqrt 3 \cos 9x = \sin 7x - \sqrt 3 \cos 7x\]
⇔ \(\sin \left( {9x - \frac{\pi }{3}} \right) = \sin \left( {7x - \frac{\pi }{3}} \right)\)
⇔ \(\left[ \begin{array}{l}9x - \frac{\pi }{3} = 7x - \frac{\pi }{3} + k2\pi \\9x - \frac{\pi }{3} = \pi - \left( {7x - \frac{\pi }{3}} \right) + k2\pi \end{array} \right.\)
⇔ \(\left[ \begin{array}{l}x = k\pi \\x = \frac{{5\pi }}{{48}} + k\frac{\pi }{8}\end{array} \right.\)
Cho x < 0 ta được:
\(\left[ \begin{array}{l}k\pi < 0\\\frac{{5\pi }}{{48}} + k\frac{\pi }{8} < 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}k < 0\\k < \frac{{ - 5}}{6}\end{array} \right.\left( {k \in \mathbb{Z}} \right) \Rightarrow \left[ \begin{array}{l}{k_{\max }} = - 1\\{k_{\max }} = - 1\end{array} \right. \Rightarrow \left[ \begin{array}{l}x = - \pi \\x = - \frac{\pi }{{48}}\end{array} \right.\)
So sánh hai nghiệm âm trên ta được nghiệm âm lớn nhất của phương trình là \(x = \frac{{ - \pi }}{{48}}\)
Vậy \({x_0} = \frac{{ - \pi }}{{48}}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Độ lớn vận tốc tổng hợp của vận động viên là:
\(\overrightarrow v \)tổng hợp = \(\overrightarrow v \) + \(\overrightarrow v \)nước
Suy ra: vtổng hợp = \(\sqrt {{v^2} + {v_{nuoc}}^2} = \sqrt {1,{7^2} + {1^2}} = 1,97\left( {m/s} \right)\)
Hướng vận tốc tổng hợp của vận động viên hợp với bờ sông 1 góc là:
\(\tan \alpha = \frac{v}{{{v_{nuoc}}}} = \frac{{1,7}}{1} = 1,7 \Rightarrow \alpha \approx 59,53^\circ \)
Lời giải
y = f(x2 + 2x)
y' = (2x + 2)f'(x2 + 2x)
Xét y' = 0 ta có: (2x + 2)f'(x2 + 2x) = 0
⇒ \(\left[ \begin{array}{l}2x + 2 = 0\\f'\left( {{x^2} + 2x} \right) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 1\\{x^2} + 2x = - 2\\{x^2} + 2x = 1\\{x^2} + 2x = 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 1\\x = - 3\\x = - 1 + \sqrt 2 \\x = - 1 - \sqrt 2 \end{array} \right.\)
Ta có bảng biến thiên:

Vậy hàm số nghịch biến trên (–3; –1) và (1; +∞)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.