Câu hỏi:

30/08/2023 380

Tìm GTLN, GTNN của hàm số \(y = \frac{{2\sin x + \cos x + 3}}{{2\cos x - \sin x + 4}}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Tập xác định: 2cosx – sinx + 4 ≠ 0

Suy ra: x

Khi đó: y(2cosx – sinx + 4) = 2sinx + cosx + 3

(2y – 1)cosx – (y + 2)sinx = 3 – 4y (*)

Để (*) có nghiệm thì:

(3 – 4y)2 ≤ (2y – 1)2 + [–(y + 2)]2

\(\frac{2}{{11}} \le y \le 2\)

Từ đó suy ra: ymax = 2; ymin = \(\frac{2}{{11}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Một vận động viên bơi về phía Bắc với vận tốc 1,7 m/s. Nước sông chảy với vận tốc 1  (ảnh 1)

Độ lớn vận tốc tổng hợp của vận động viên là:

\(\overrightarrow v \)tổng hợp = \(\overrightarrow v \) + \(\overrightarrow v \)nước

Suy ra: vtổng hợp = \(\sqrt {{v^2} + {v_{nuoc}}^2} = \sqrt {1,{7^2} + {1^2}} = 1,97\left( {m/s} \right)\)

Hướng vận tốc tổng hợp của vận động viên hợp với bờ sông 1 góc là:

\(\tan \alpha = \frac{v}{{{v_{nuoc}}}} = \frac{{1,7}}{1} = 1,7 \Rightarrow \alpha \approx 59,53^\circ \)

Lời giải

y = f(x2 + 2x)

y' = (2x + 2)f'(x2 + 2x)

Xét y' = 0 ta có: (2x + 2)f'(x2 + 2x) = 0

\(\left[ \begin{array}{l}2x + 2 = 0\\f'\left( {{x^2} + 2x} \right) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 1\\{x^2} + 2x = - 2\\{x^2} + 2x = 1\\{x^2} + 2x = 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 1\\x = - 3\\x = - 1 + \sqrt 2 \\x = - 1 - \sqrt 2 \end{array} \right.\)

Ta có bảng biến thiên:

Hàm số y = f(x^2 + 2x) nghịch biến trên khoảng nào x - vô cùng -2 1 3 + vô cùng (ảnh 1)

Vậy hàm số nghịch biến trên (–3; –1) và (1; +∞)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP