Cho nửa đường tròn (O) đường kính AB, tiếp tuyến Ax. Gọi C là một điểm trên nửa đường tròn. Tia phân giác của \(\widehat {CAx}\) cắt nửa đường tròn ở E, AE và BC cắt nhau ở K. AC cắt BE ở I.
a) Tam giác ABK là tam giác gì? Vì sao?
b) Chứng minh KI // Ax.
c) Chứng minh OE // BC.
Cho nửa đường tròn (O) đường kính AB, tiếp tuyến Ax. Gọi C là một điểm trên nửa đường tròn. Tia phân giác của \(\widehat {CAx}\) cắt nửa đường tròn ở E, AE và BC cắt nhau ở K. AC cắt BE ở I.
a) Tam giác ABK là tam giác gì? Vì sao?
b) Chứng minh KI // Ax.
c) Chứng minh OE // BC.
Quảng cáo
Trả lời:


a) Ta có: Bx là phân giác của \(\widehat {ABC}\)nên BE là phân giác \(\widehat {ABK}\).
Vì AB là đường kính của (O)
⇒ BE ⊥ EA ⇒ BE ⊥ AK
⇒ ΔABK cân tại B
b) AB là đường kính của (O) ⇒ AC ⊥ BC
⇒ CA ⊥ BK
Mà BE ⊥ AK
⇒ I là trực tâm ΔKAB
⇒ KI ⊥ AB
⇒ KI // Ax
c) Ta có ΔBAK cân tại B, BE ⊥ AK
⇒ E là trung điểm AK
Lại có O là trung điểm AB
⇒ OE là đường trung bình ΔABK
⇒ OE // BK
⇒ OE // BC.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Độ lớn vận tốc tổng hợp của vận động viên là:
\(\overrightarrow v \)tổng hợp = \(\overrightarrow v \) + \(\overrightarrow v \)nước
Suy ra: vtổng hợp = \(\sqrt {{v^2} + {v_{nuoc}}^2} = \sqrt {1,{7^2} + {1^2}} = 1,97\left( {m/s} \right)\)
Hướng vận tốc tổng hợp của vận động viên hợp với bờ sông 1 góc là:
\(\tan \alpha = \frac{v}{{{v_{nuoc}}}} = \frac{{1,7}}{1} = 1,7 \Rightarrow \alpha \approx 59,53^\circ \)
Lời giải
y = f(x2 + 2x)
y' = (2x + 2)f'(x2 + 2x)
Xét y' = 0 ta có: (2x + 2)f'(x2 + 2x) = 0
⇒ \(\left[ \begin{array}{l}2x + 2 = 0\\f'\left( {{x^2} + 2x} \right) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 1\\{x^2} + 2x = - 2\\{x^2} + 2x = 1\\{x^2} + 2x = 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 1\\x = - 3\\x = - 1 + \sqrt 2 \\x = - 1 - \sqrt 2 \end{array} \right.\)
Ta có bảng biến thiên:

Vậy hàm số nghịch biến trên (–3; –1) và (1; +∞)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.