Câu hỏi:
11/07/2024 221Cho dãy gồm 6 số nguyên tố phân biệt và tăng dần. Hiệu giữa hai số liên tiếp của dãy số đã cho đều bằng nhau. Chứng minh rằng hiệu giữa số lớn nhất và số bé nhất không nhỏ hơn 150.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi 6 số đó là p, p + d, p + 2d, p + 3d, p + 4d, p + 5d.
p + d, p + 2d là 2 số lẻ ⇒ hiệu ⋮ 2 (p + d ≥ 4)
p + d, p + 2d, p + 3d > 3 các số này ⋮̸ 3 nên có 2 số có cùng số dư khi chia 3.
Hiệu của chúng là d hoặc 2d ⋮ 3
⇒ d ⋮ 3
⇒ d ⋮ 6 nên d ≥ 6
p + d, p + 2d, p + 3d, p + 4d, p + 5d là 5 số, các số này không chia hết 5 nên có 2 số có cùng số dư khi chia 5.
Hiệu của chúng là d, 2d, 3d hoặc 4d ⋮ 5
⇒ d ⋮ 5
⇒ d ⋮ 30
Ta có : d ≥ 30
⇒ 5d ≥ 150 (đpcm)
Vậy hiệu giữa số lớn nhất và số bé nhất không nhỏ hơn 150.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một vận động viên bơi về phía Bắc với vận tốc 1,7 m/s. Nước sông chảy với vận tốc 1 m/s về phía Đông. Tính độ lớn và hướng vận tốc tổng hợp của vận động viên?
Câu 2:
Hàm số y = f(x2 + 2x) nghịch biến trên khoảng nào?
x |
–∞ |
–2 |
1 |
3 +∞ |
f'(x) |
– |
0 + |
0 – |
0 – |
Câu 3:
Cho tam giác ABC có \(\widehat B = 60^\circ ,\widehat C = 45^\circ ,BC = a\).
a) Tính AB, AC.
b) Chứng minh \(\cos 75^\circ = \frac{{\sqrt 6 - \sqrt 2 }}{4}\).
Câu 4:
Cho hàm số y = \(\frac{{x + 1}}{{x - 3}}\) có đồ thị (C) và các đường thẳng d1: y = 2x, d2: y = 2x – 2, d3: y = 3x + 3, d4: y = –x + 3. Hỏi có bao nhiêu đường thẳng trong 4 đường thẳng d1, d2, d3, d4 đi qua giao điểm của (C) và trục hoành.
Câu 6:
Một tập thể gồm 14 người gồm 6 nam và 8 nữ trong đó có An và Bình người ta muốn chọn một tổ công tác gồm 6 người. Tìm số cách chọn tổ sao cho có 1 tổ trưởng 5 tổ viên trong đó An và Bình không đồng thời có mặt.
về câu hỏi!