Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Giả sử \(\sqrt 2 \) không phải là số vô tỉ. Khi đó tồn tại các số nguyên a và b sao cho \(\sqrt 2 = \frac{a}{b}\) với b > 0. Hai số a và b không có ước chung nào khác 1 và –1.
Ta có: \({\left( {\sqrt 2 } \right)^2} = {\left( {\frac{a}{b}} \right)^2}\)(1)
Kết quả trên chứng tỏ a là số chẵn, nghĩa là ta có a = 2c với c là số nguyên.
Thay a = 2c vào (1) ta được: (2c)2 = 2b2 hay b2 = 2c2
Kết quả trên chứng tỏ b phải là số chẵn.
Hai số a và b đều là số chẵn, trái với giả thiết a và b không có ước chung nào khác 1 và –1.
Vậy \(\sqrt 2 \) là số vô tỉ.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một vận động viên bơi về phía Bắc với vận tốc 1,7 m/s. Nước sông chảy với vận tốc 1 m/s về phía Đông. Tính độ lớn và hướng vận tốc tổng hợp của vận động viên?
Câu 2:
Hàm số y = f(x2 + 2x) nghịch biến trên khoảng nào?
x |
–∞ |
–2 |
1 |
3 +∞ |
f'(x) |
– |
0 + |
0 – |
0 – |
Câu 3:
Cho tam giác ABC có \(\widehat B = 60^\circ ,\widehat C = 45^\circ ,BC = a\).
a) Tính AB, AC.
b) Chứng minh \(\cos 75^\circ = \frac{{\sqrt 6 - \sqrt 2 }}{4}\).
Câu 4:
Cho hàm số y = \(\frac{{x + 1}}{{x - 3}}\) có đồ thị (C) và các đường thẳng d1: y = 2x, d2: y = 2x – 2, d3: y = 3x + 3, d4: y = –x + 3. Hỏi có bao nhiêu đường thẳng trong 4 đường thẳng d1, d2, d3, d4 đi qua giao điểm của (C) và trục hoành.
Câu 6:
Một tập thể gồm 14 người gồm 6 nam và 8 nữ trong đó có An và Bình người ta muốn chọn một tổ công tác gồm 6 người. Tìm số cách chọn tổ sao cho có 1 tổ trưởng 5 tổ viên trong đó An và Bình không đồng thời có mặt.
về câu hỏi!