Cho hàm số y = x3 − (m + 1)x2 − (2m2 − 3m + 2)x + 2m(2m − 1). Tìm tất cả các giá trị thực của tham số m để hàm số đã cho đồng biến trên [2;+∞).
Cho hàm số y = x3 − (m + 1)x2 − (2m2 − 3m + 2)x + 2m(2m − 1). Tìm tất cả các giá trị thực của tham số m để hàm số đã cho đồng biến trên [2;+∞).
Quảng cáo
Trả lời:

Ta có y' = 3x2 − 2(m + 1)x − (2m2 − 3m + 2)
Xét phương trình y' = 0 có
Δ' = (m + 1)2 + 3(2m2 − 3m + 2) = 7(m2 – m + 1) > 0, ∀m ∈ ℝ.
Suy ra phương trình y' = 0 luôn có hai nghiệm x1 < x2 với mọi m .
Để hàm số đồng biến trên [2;+∞) ⇔ phương trình y' = 0 có hai nghiệm x1 < x2 ≤ 2
⇔ \(\left\{ \begin{array}{l}\left( {{x_1} - 2} \right) + \left( {{x_2} - 2} \right) < 0\\\left( {{x_1} - 2} \right)\left( {{x_2} - 2} \right) \ge 0\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l}{x_1} + {x_2} < 4\\{x_1}{x_2} - 2\left( {{x_1} + {x_2}} \right) + 4 \ge 0\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l}\frac{{2\left( {m + 1} \right)}}{3} < 4\\\frac{{ - \left( {2{m^2} - 3m + 2} \right)}}{3} - 2.\frac{{2\left( {m + 1} \right)}}{3} + 4 \ge 0\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l}m < 5\\ - 2 \le m \le \frac{3}{2}\end{array} \right. \Leftrightarrow - 2 \le m \le \frac{3}{2}\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Độ lớn vận tốc tổng hợp của vận động viên là:
\(\overrightarrow v \)tổng hợp = \(\overrightarrow v \) + \(\overrightarrow v \)nước
Suy ra: vtổng hợp = \(\sqrt {{v^2} + {v_{nuoc}}^2} = \sqrt {1,{7^2} + {1^2}} = 1,97\left( {m/s} \right)\)
Hướng vận tốc tổng hợp của vận động viên hợp với bờ sông 1 góc là:
\(\tan \alpha = \frac{v}{{{v_{nuoc}}}} = \frac{{1,7}}{1} = 1,7 \Rightarrow \alpha \approx 59,53^\circ \)
Lời giải
y = f(x2 + 2x)
y' = (2x + 2)f'(x2 + 2x)
Xét y' = 0 ta có: (2x + 2)f'(x2 + 2x) = 0
⇒ \(\left[ \begin{array}{l}2x + 2 = 0\\f'\left( {{x^2} + 2x} \right) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 1\\{x^2} + 2x = - 2\\{x^2} + 2x = 1\\{x^2} + 2x = 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 1\\x = - 3\\x = - 1 + \sqrt 2 \\x = - 1 - \sqrt 2 \end{array} \right.\)
Ta có bảng biến thiên:

Vậy hàm số nghịch biến trên (–3; –1) và (1; +∞)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.