Cho tam giác ABC có AB = 6 cm, AC = 9 cm, BC = 10 cm, đường phân giác trong AD, đường phân giác ngoài AE.
a) Tính DB, EB.
b) Chứng minh tam giác ADE vuông.
c) Tính tỉ số diện tích của tam giác ABD và tam giác ADC.
Cho tam giác ABC có AB = 6 cm, AC = 9 cm, BC = 10 cm, đường phân giác trong AD, đường phân giác ngoài AE.
a) Tính DB, EB.
b) Chứng minh tam giác ADE vuông.
c) Tính tỉ số diện tích của tam giác ABD và tam giác ADC.
Quảng cáo
Trả lời:


a) Theo tính chất đường phân giác ta có:
\(\frac{{DB}}{{AB}} = \frac{{DC}}{{AC}} = \frac{{DB + DC}}{{AB + AC}} = \frac{{BC}}{{AB + AC}} = \frac{{10}}{{15}} = \frac{2}{3}\)
Suy ra: DB = \(\frac{2}{3}AB = \frac{2}{3}.6 = 4\left( {cm} \right)\)
\(\frac{{EB}}{{AB}} = \frac{{EC}}{{AC}} = \frac{{EC - EB}}{{AC - AB}} = \frac{{BC}}{{AC - AB}} = \frac{{10}}{{9 - 6}} = \frac{{10}}{3}\)
⇒ EB = \(\frac{{10}}{3}.6 = 20\left( {cm} \right)\)
b) Vì AE và AD là phân giác của 2 góc kề bù
⇒ \(\widehat {EAD}\)vuông
⇒ Tam giác ADE vuông tại A
c) Ta có tam giác ABD và ADC có chung đường cao hạ từ đỉnh A nên tỉ số diện tích 2 tam giác chính là tỉ số giữa 2 cạnh đáy
Mà theo tính chất đường phân giác: \(\frac{{DB}}{{DC}} = \frac{{AB}}{{AC}}\)
⇒ \(\frac{{{S_{ABD}}}}{{{S_{ADC}}}} = \frac{{DB}}{{DC}} = \frac{{AB}}{{AC}} = \frac{6}{9} = \frac{2}{3}\)
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Độ lớn vận tốc tổng hợp của vận động viên là:
\(\overrightarrow v \)tổng hợp = \(\overrightarrow v \) + \(\overrightarrow v \)nước
Suy ra: vtổng hợp = \(\sqrt {{v^2} + {v_{nuoc}}^2} = \sqrt {1,{7^2} + {1^2}} = 1,97\left( {m/s} \right)\)
Hướng vận tốc tổng hợp của vận động viên hợp với bờ sông 1 góc là:
\(\tan \alpha = \frac{v}{{{v_{nuoc}}}} = \frac{{1,7}}{1} = 1,7 \Rightarrow \alpha \approx 59,53^\circ \)
Lời giải
y = f(x2 + 2x)
y' = (2x + 2)f'(x2 + 2x)
Xét y' = 0 ta có: (2x + 2)f'(x2 + 2x) = 0
⇒ \(\left[ \begin{array}{l}2x + 2 = 0\\f'\left( {{x^2} + 2x} \right) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 1\\{x^2} + 2x = - 2\\{x^2} + 2x = 1\\{x^2} + 2x = 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 1\\x = - 3\\x = - 1 + \sqrt 2 \\x = - 1 - \sqrt 2 \end{array} \right.\)
Ta có bảng biến thiên:

Vậy hàm số nghịch biến trên (–3; –1) và (1; +∞)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.