Câu hỏi:
12/07/2024 1,477
Cho tam giác ABC có AB = 1, \(\widehat A = 105^\circ ,\widehat B = 60^\circ \). Trên cạnh BC lấy điểm E sao cho BE = 1. Vẽ ED song song với AB. Chứng minh: \(\frac{1}{{A{C^2}}} + \frac{1}{{A{D^2}}} = \frac{4}{3}\).
Cho tam giác ABC có AB = 1, \(\widehat A = 105^\circ ,\widehat B = 60^\circ \). Trên cạnh BC lấy điểm E sao cho BE = 1. Vẽ ED song song với AB. Chứng minh: \(\frac{1}{{A{C^2}}} + \frac{1}{{A{D^2}}} = \frac{4}{3}\).
Quảng cáo
Trả lời:

Vẽ AH ⊥ BC (H ∈ BC) ; AF ⊥ AC (F ∈ AC) (xem hình)
Từ các dữ kiện đề bài AB = BE = 1, \(\widehat {ABE} = 60^\circ \)⇒ ΔABE đều
AH ⊥ BE ⇒ AH là đường cao cũng là đường trung tuyến nên
BH = BE : 2 = 0,5
Áp dụng định lý Pi–ta–go vào ΔAHB ⊥ H:
AH2 = AB2 – BH2 = AB2 – \({\left( {\frac{{BE}}{2}} \right)^2} = 1 - \frac{1}{4} = \frac{3}{4}\left( 1 \right)\)
\(\widehat {ACB} = 180^\circ - \widehat {BAC} - \widehat {ABC} = 180^\circ - 105^\circ - 60^\circ = 15^\circ \)
\(\widehat {BAF} = \widehat {BAC} - \widehat {FAC} = 105^\circ - 90^\circ = 15^\circ \)
Suy ra: \(\widehat {ACB} = \widehat {BAF}\)
Xét tam giác ABC và tam giác FBA có:
\(\widehat {ACB} = \widehat {BAF}\)
Chung \(\widehat B\)
⇒ ∆ABC ∽ ∆FBA (g.g)
⇒ \(\frac{{AF}}{{AC}} = \frac{{AB}}{{BC}} = \frac{{BE}}{{BC}} = \frac{{AD}}{{AC}}\)(do ED // AB)
Nên AF = AD (2)
Tam giác AFC vuông tại A, đường cao AH nên có hệ thức lượng:
\(\frac{1}{{A{C^2}}} + \frac{1}{{A{F^2}}} = \frac{1}{{A{H^2}}} = \frac{4}{3}\)
Mà AF = AD nên \(\frac{1}{{A{C^2}}} + \frac{1}{{A{D^2}}} = \frac{4}{3}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Độ lớn vận tốc tổng hợp của vận động viên là:
\(\overrightarrow v \)tổng hợp = \(\overrightarrow v \) + \(\overrightarrow v \)nước
Suy ra: vtổng hợp = \(\sqrt {{v^2} + {v_{nuoc}}^2} = \sqrt {1,{7^2} + {1^2}} = 1,97\left( {m/s} \right)\)
Hướng vận tốc tổng hợp của vận động viên hợp với bờ sông 1 góc là:
\(\tan \alpha = \frac{v}{{{v_{nuoc}}}} = \frac{{1,7}}{1} = 1,7 \Rightarrow \alpha \approx 59,53^\circ \)
Lời giải
y = f(x2 + 2x)
y' = (2x + 2)f'(x2 + 2x)
Xét y' = 0 ta có: (2x + 2)f'(x2 + 2x) = 0
⇒ \(\left[ \begin{array}{l}2x + 2 = 0\\f'\left( {{x^2} + 2x} \right) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 1\\{x^2} + 2x = - 2\\{x^2} + 2x = 1\\{x^2} + 2x = 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 1\\x = - 3\\x = - 1 + \sqrt 2 \\x = - 1 - \sqrt 2 \end{array} \right.\)
Ta có bảng biến thiên:

Vậy hàm số nghịch biến trên (–3; –1) và (1; +∞)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.