Câu hỏi:

13/07/2024 5,651 Lưu

Tìm giá trị nhỏ nhất, lớn nhất của hàm số y = sinx + \(\sin \left( {x + \frac{{2\pi }}{3}} \right)\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

y = sinx + \(\sin \left( {x + \frac{{2\pi }}{3}} \right)\)

= sinx – \(\frac{1}{2}\sin x + \frac{{\sqrt 3 }}{2}\cos x = \sin \left( {x + \frac{\pi }{3}} \right)\)

Ta có: –1 ≤ sinx ≤ 1 với mọi x

Nên –1 ≤ \(\sin \left( {x + \frac{\pi }{3}} \right)\) ≤ 1

Vậy giá trị lớn nhất của y = 1 khi \(\sin \left( {x + \frac{\pi }{3}} \right) = 1 \Leftrightarrow x = \frac{\pi }{6} + k2\pi \left( {k \in \mathbb{Z}} \right)\)

Giá trị nhỏ nhất của y = – 1 khi \(\sin \left( {x + \frac{\pi }{3}} \right) = - 1 \Leftrightarrow x = - \frac{{5\pi }}{6} + k2\pi \left( {k \in \mathbb{Z}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Một vận động viên bơi về phía Bắc với vận tốc 1,7 m/s. Nước sông chảy với vận tốc 1  (ảnh 1)

Độ lớn vận tốc tổng hợp của vận động viên là:

\(\overrightarrow v \)tổng hợp = \(\overrightarrow v \) + \(\overrightarrow v \)nước

Suy ra: vtổng hợp = \(\sqrt {{v^2} + {v_{nuoc}}^2} = \sqrt {1,{7^2} + {1^2}} = 1,97\left( {m/s} \right)\)

Hướng vận tốc tổng hợp của vận động viên hợp với bờ sông 1 góc là:

\(\tan \alpha = \frac{v}{{{v_{nuoc}}}} = \frac{{1,7}}{1} = 1,7 \Rightarrow \alpha \approx 59,53^\circ \)

Lời giải

y = f(x2 + 2x)

y' = (2x + 2)f'(x2 + 2x)

Xét y' = 0 ta có: (2x + 2)f'(x2 + 2x) = 0

\(\left[ \begin{array}{l}2x + 2 = 0\\f'\left( {{x^2} + 2x} \right) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 1\\{x^2} + 2x = - 2\\{x^2} + 2x = 1\\{x^2} + 2x = 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 1\\x = - 3\\x = - 1 + \sqrt 2 \\x = - 1 - \sqrt 2 \end{array} \right.\)

Ta có bảng biến thiên:

Hàm số y = f(x^2 + 2x) nghịch biến trên khoảng nào x - vô cùng -2 1 3 + vô cùng (ảnh 1)

Vậy hàm số nghịch biến trên (–3; –1) và (1; +∞)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP