Giải phương trình: sin4x + \({\cos ^4}\left( {x + \frac{\pi }{4}} \right) = \frac{1}{4}\).
Giải phương trình: sin4x + \({\cos ^4}\left( {x + \frac{\pi }{4}} \right) = \frac{1}{4}\).
Quảng cáo
Trả lời:
sin4x + \({\cos ^4}\left( {x + \frac{\pi }{4}} \right) = \frac{1}{4}\)
⇔ sin4x + \({\left( {\cos x.\frac{1}{{\sqrt 2 }} - \sin x.\frac{1}{{\sqrt 2 }}} \right)^4} = \frac{1}{4}\)
⇔ sin4x + \(\frac{1}{4}{\left( {\cos x - \sin x} \right)^4} = \frac{1}{4}\)
⇔ sin4x + \(\frac{1}{4}{\left[ {{{\left( {\cos x - \sin x} \right)}^2}} \right]^2} = \frac{1}{4}\)
⇔ sin4x + \(\frac{1}{4}{\left( {{{\cos }^2}x - 2\sin x\cos x + {{\sin }^2}x} \right)^2} = \frac{1}{4}\)
⇔ sin4x + \(\frac{1}{4}{\left( {1 - 2\sin x\cos x} \right)^2} = \frac{1}{4}\)
⇔ sin4x + sin2xcos2x – sinxcosx = 0
⇔ sinx(sin3x + sinxcos2x – cosx) = 0
⇔ \(\left[ \begin{array}{l}\sin x = 0\left( 1 \right)\\{\sin ^3}x + \sin x{\cos ^2}x - \cos x = 0\left( 2 \right)\end{array} \right.\)
(1): x = kπ
(2): sinx(sin2 + cos2x) – cosx = 0
⇔ sinx – cosx = 0
⇔ \(\sin \left( {x - \frac{\pi }{4}} \right) = 0\)
⇔ \(x = \frac{\pi }{4} + k\pi \left( {k \in \mathbb{Z}} \right)\)
Vậy phương trình có nghiệm: \(x = \frac{\pi }{4} + k\pi \left( {k \in \mathbb{Z}} \right)\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Độ lớn vận tốc tổng hợp của vận động viên là:
\(\overrightarrow v \)tổng hợp = \(\overrightarrow v \) + \(\overrightarrow v \)nước
Suy ra: vtổng hợp = \(\sqrt {{v^2} + {v_{nuoc}}^2} = \sqrt {1,{7^2} + {1^2}} = 1,97\left( {m/s} \right)\)
Hướng vận tốc tổng hợp của vận động viên hợp với bờ sông 1 góc là:
\(\tan \alpha = \frac{v}{{{v_{nuoc}}}} = \frac{{1,7}}{1} = 1,7 \Rightarrow \alpha \approx 59,53^\circ \)
Lời giải
y = f(x2 + 2x)
y' = (2x + 2)f'(x2 + 2x)
Xét y' = 0 ta có: (2x + 2)f'(x2 + 2x) = 0
⇒ \(\left[ \begin{array}{l}2x + 2 = 0\\f'\left( {{x^2} + 2x} \right) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 1\\{x^2} + 2x = - 2\\{x^2} + 2x = 1\\{x^2} + 2x = 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 1\\x = - 3\\x = - 1 + \sqrt 2 \\x = - 1 - \sqrt 2 \end{array} \right.\)
Ta có bảng biến thiên:

Vậy hàm số nghịch biến trên (–3; –1) và (1; +∞)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.