Câu hỏi:

30/08/2023 541

Giải phương trình: sin3x + cos3x = 1 – \(\frac{1}{2}\sin 2x\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

sin3x + cos3x = 1 – \(\frac{1}{2}\sin 2x\)

(sinx + cosx)(sin2x – sinxcosx + cos2x) = 1 – \(\frac{1}{2}\sin 2x\)

(sinx + cosx)(1 – sinxcosx) = 1 – \(\frac{1}{2}\sin 2x\)

(sinx + cosx)\(\left( {1 - \frac{1}{2}\sin 2x} \right) = 1 - \frac{1}{2}\sin 2x\)

\(\left( {1 - \frac{1}{2}\sin 2x} \right)\left( {\sin x + \cos x - 1} \right) = 0\)

\(\left[ \begin{array}{l}\sin 2x = 2 > 1\left( L \right)\\\sin x + \cos x - 1 = 0\end{array} \right.\)

sinx + cosx = 1

\(\cos \left( {x - \frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2} = \cos \left( {\frac{\pi }{4}} \right)\)

\(x - \frac{\pi }{4} = \pm \frac{\pi }{4} + k2\pi \)

\(\left[ \begin{array}{l}x = k2\pi \\x = \frac{\pi }{2} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Một vận động viên bơi về phía Bắc với vận tốc 1,7 m/s. Nước sông chảy với vận tốc 1  (ảnh 1)

Độ lớn vận tốc tổng hợp của vận động viên là:

\(\overrightarrow v \)tổng hợp = \(\overrightarrow v \) + \(\overrightarrow v \)nước

Suy ra: vtổng hợp = \(\sqrt {{v^2} + {v_{nuoc}}^2} = \sqrt {1,{7^2} + {1^2}} = 1,97\left( {m/s} \right)\)

Hướng vận tốc tổng hợp của vận động viên hợp với bờ sông 1 góc là:

\(\tan \alpha = \frac{v}{{{v_{nuoc}}}} = \frac{{1,7}}{1} = 1,7 \Rightarrow \alpha \approx 59,53^\circ \)

Lời giải

y = f(x2 + 2x)

y' = (2x + 2)f'(x2 + 2x)

Xét y' = 0 ta có: (2x + 2)f'(x2 + 2x) = 0

\(\left[ \begin{array}{l}2x + 2 = 0\\f'\left( {{x^2} + 2x} \right) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 1\\{x^2} + 2x = - 2\\{x^2} + 2x = 1\\{x^2} + 2x = 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 1\\x = - 3\\x = - 1 + \sqrt 2 \\x = - 1 - \sqrt 2 \end{array} \right.\)

Ta có bảng biến thiên:

Hàm số y = f(x^2 + 2x) nghịch biến trên khoảng nào x - vô cùng -2 1 3 + vô cùng (ảnh 1)

Vậy hàm số nghịch biến trên (–3; –1) và (1; +∞)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP