Cho tam giác ABC vuông cân tại A, đường cao AH. Từ điểm M bất kì trên cạnh BC (M không trùng với B và C) kẻ các đường thẳng song song với AC và AB ở D và cắt AC ở E. Chứng minh \[\widehat {DHE} = 90^\circ \].
Cho tam giác ABC vuông cân tại A, đường cao AH. Từ điểm M bất kì trên cạnh BC (M không trùng với B và C) kẻ các đường thẳng song song với AC và AB ở D và cắt AC ở E. Chứng minh \[\widehat {DHE} = 90^\circ \].
Quảng cáo
Trả lời:


Do ΔABC vuông cân tại A có đường cao AH
⇒ AH = BH = \(\frac{1}{2}BC\)
Ta có
\[\widehat {BMD} = \widehat C\] (2 góc đồng vị)
\[\widehat B = \widehat C\](gt)
⇒ \[\widehat {BMD} = \widehat B\]
Mà MD // AC (gt)
AC ⊥ AB (gt)
⇒ MD ⊥ AB
⇒ \[\widehat {BDM} = 90^\circ \]
Do đó ΔBDM vuông cân tại D
⇒ BD = DM
Lại có tứ giác ADME là hình chữ nhật ( do \[\widehat {BAC} = \widehat {ADM} = \widehat {AEM} = 90^\circ \])
⇒ BD = DM = AE
Mặt khác ta có
\[\widehat {HAC} + \widehat C = 90^\circ \] (ΔACH vuông tại H)
\[\widehat B + \widehat C = 90^\circ \]
⇒ \(\widehat {HAE} = \widehat B\)
Xét ΔHAE và ΔHBD có
HA = HB (cmt)
\(\widehat {HAE} = \widehat B\)(cmt)
AE = BD (cmt)
⇒ ΔHAE = ΔHBD (c.g.c)
⇒ \[\widehat {AHE} = \widehat {BHD}\]
Mà \[\widehat {BHD} + \widehat {AHD} = \widehat {BHA} = 90^\circ \]
⇒ \[\widehat {DHE} = 90^\circ \]
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Độ lớn vận tốc tổng hợp của vận động viên là:
\(\overrightarrow v \)tổng hợp = \(\overrightarrow v \) + \(\overrightarrow v \)nước
Suy ra: vtổng hợp = \(\sqrt {{v^2} + {v_{nuoc}}^2} = \sqrt {1,{7^2} + {1^2}} = 1,97\left( {m/s} \right)\)
Hướng vận tốc tổng hợp của vận động viên hợp với bờ sông 1 góc là:
\(\tan \alpha = \frac{v}{{{v_{nuoc}}}} = \frac{{1,7}}{1} = 1,7 \Rightarrow \alpha \approx 59,53^\circ \)
Lời giải
y = f(x2 + 2x)
y' = (2x + 2)f'(x2 + 2x)
Xét y' = 0 ta có: (2x + 2)f'(x2 + 2x) = 0
⇒ \(\left[ \begin{array}{l}2x + 2 = 0\\f'\left( {{x^2} + 2x} \right) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 1\\{x^2} + 2x = - 2\\{x^2} + 2x = 1\\{x^2} + 2x = 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 1\\x = - 3\\x = - 1 + \sqrt 2 \\x = - 1 - \sqrt 2 \end{array} \right.\)
Ta có bảng biến thiên:

Vậy hàm số nghịch biến trên (–3; –1) và (1; +∞)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.