Câu hỏi:

11/07/2024 1,572 Lưu

Cho tam giác ABC vuông cân tại A, đường cao AH. Từ điểm M bất kì trên cạnh BC (M không trùng với B và C) kẻ các đường thẳng song song với AC và AB ở D và cắt AC ở E. Chứng minh \[\widehat {DHE} = 90^\circ \].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC vuông cân tại A, đường cao AH. Từ điểm M bất kì trên cạnh BC (ảnh 1)

Do ΔABC vuông cân tại A có đường cao AH 

AH = BH = \(\frac{1}{2}BC\)

Ta có

\[\widehat {BMD} = \widehat C\] (2 góc đồng vị) 

\[\widehat B = \widehat C\](gt)

 \[\widehat {BMD} = \widehat B\]

Mà MD // AC (gt)

AC AB (gt)
MD AB

  \[\widehat {BDM} = 90^\circ \]

Do đó ΔBDM vuông cân tại D

BD = DM 

Lại có tứ giác ADME là hình chữ nhật ( do \[\widehat {BAC} = \widehat {ADM} = \widehat {AEM} = 90^\circ \])

BD = DM = AE

Mặt khác ta có

\[\widehat {HAC} + \widehat C = 90^\circ \] (ΔACH vuông tại H)
\[\widehat B + \widehat C = 90^\circ \]

 \(\widehat {HAE} = \widehat B\)

Xét ΔHAE và ΔHBD có

HA = HB (cmt)

\(\widehat {HAE} = \widehat B\)(cmt)

AE = BD (cmt)

ΔHAE = ΔHBD (c.g.c)

 \[\widehat {AHE} = \widehat {BHD}\]
Mà \[\widehat {BHD} + \widehat {AHD} = \widehat {BHA} = 90^\circ \]

 \[\widehat {DHE} = 90^\circ \]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Một vận động viên bơi về phía Bắc với vận tốc 1,7 m/s. Nước sông chảy với vận tốc 1  (ảnh 1)

Độ lớn vận tốc tổng hợp của vận động viên là:

\(\overrightarrow v \)tổng hợp = \(\overrightarrow v \) + \(\overrightarrow v \)nước

Suy ra: vtổng hợp = \(\sqrt {{v^2} + {v_{nuoc}}^2} = \sqrt {1,{7^2} + {1^2}} = 1,97\left( {m/s} \right)\)

Hướng vận tốc tổng hợp của vận động viên hợp với bờ sông 1 góc là:

\(\tan \alpha = \frac{v}{{{v_{nuoc}}}} = \frac{{1,7}}{1} = 1,7 \Rightarrow \alpha \approx 59,53^\circ \)

Lời giải

y = f(x2 + 2x)

y' = (2x + 2)f'(x2 + 2x)

Xét y' = 0 ta có: (2x + 2)f'(x2 + 2x) = 0

\(\left[ \begin{array}{l}2x + 2 = 0\\f'\left( {{x^2} + 2x} \right) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 1\\{x^2} + 2x = - 2\\{x^2} + 2x = 1\\{x^2} + 2x = 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 1\\x = - 3\\x = - 1 + \sqrt 2 \\x = - 1 - \sqrt 2 \end{array} \right.\)

Ta có bảng biến thiên:

Hàm số y = f(x^2 + 2x) nghịch biến trên khoảng nào x - vô cùng -2 1 3 + vô cùng (ảnh 1)

Vậy hàm số nghịch biến trên (–3; –1) và (1; +∞)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP