Câu hỏi:
12/07/2024 647
Một đoàn tàu có 5 toa chở khách với mỗi toa còn ít nhất 5 chỗ trống. Trên sân ga có 5 hành khách chuẩn bị lên tàu. Tính xác suất để có ít nhất 1 toa có nhiều hơn 2 khách lên?
Một đoàn tàu có 5 toa chở khách với mỗi toa còn ít nhất 5 chỗ trống. Trên sân ga có 5 hành khách chuẩn bị lên tàu. Tính xác suất để có ít nhất 1 toa có nhiều hơn 2 khách lên?
Quảng cáo
Trả lời:
Số phần tử không gian mẫu: n(Ω) = 55 = 3125.
Gọi A là biến cố: “Có ít nhất 1 toa có nhiều hơn 2 khách lên”.
Có 4 trường hợp:
TH1: Một toa có 3 khách lên, 1 toa có 2 khách lên, 3 toa còn lại không có khách lên
– Chọn 1 toa có 3 khách lên: có \(C_5^1\) cách;
– Chọn 3 khách lên toa vừa chọn: có \(C_5^3\) cách;
– Chọn 1 toa cho 2 khách còn lại: có \(C_4^1\) cách;
Trường hợp này có: \(C_5^1.C_5^3.C_4^1\)= 200 cách.
TH2:1 toa có 3 khách lên, 2 toa có 1 khách, 2 toa còn lại không có khách lên
– Chọn 1 toa có 3 khách lên: có \(C_5^1\) cách;
– Chọn 3 khách lên toa vừa chọn: có \(C_5^3\) cách;
– Chọn 2 toa cho 2 khách còn lại: có \(A_4^2\) cách;
Trường hợp này có: \(C_5^1.C_5^3.A_4^2 = 600\) cách.
TH3:1 toa có 4 khách lên, 1 toa có 1 khách, 3 toa còn lại không có khách lên
– Chọn 1 toa có 4 khách lên: có \(C_5^1\) cách;
– Chọn 4 khách lên toa vừa chọn: có \(C_5^4\) cách;
– Chọn 1 toa cho 1 khách còn lại: có \(C_4^1\) cách;
Trường hợp này có: \(C_5^1.C_5^4.C_4^1\)=100 cách.
TH4:1 toa có 5 khách lên, 4 toa còn lại không có khách lên
Trường hợp này có: \(C_5^1\)= 5 cách.
Số phần tử của biến cố A: n(A) = 200 + 600 + 100 + 5 = 905.
Vậy xác suất của biến cố A là: P(A) \( = \frac{{905}}{{3125}} = \frac{{181}}{{625}}.\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Độ lớn vận tốc tổng hợp của vận động viên là:
\(\overrightarrow v \)tổng hợp = \(\overrightarrow v \) + \(\overrightarrow v \)nước
Suy ra: vtổng hợp = \(\sqrt {{v^2} + {v_{nuoc}}^2} = \sqrt {1,{7^2} + {1^2}} = 1,97\left( {m/s} \right)\)
Hướng vận tốc tổng hợp của vận động viên hợp với bờ sông 1 góc là:
\(\tan \alpha = \frac{v}{{{v_{nuoc}}}} = \frac{{1,7}}{1} = 1,7 \Rightarrow \alpha \approx 59,53^\circ \)
Lời giải
y = f(x2 + 2x)
y' = (2x + 2)f'(x2 + 2x)
Xét y' = 0 ta có: (2x + 2)f'(x2 + 2x) = 0
⇒ \(\left[ \begin{array}{l}2x + 2 = 0\\f'\left( {{x^2} + 2x} \right) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 1\\{x^2} + 2x = - 2\\{x^2} + 2x = 1\\{x^2} + 2x = 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 1\\x = - 3\\x = - 1 + \sqrt 2 \\x = - 1 - \sqrt 2 \end{array} \right.\)
Ta có bảng biến thiên:

Vậy hàm số nghịch biến trên (–3; –1) và (1; +∞)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.