Câu hỏi:
12/07/2024 216Cho hình vuông ABCD có AC cắt BD tại O. Gọi E và F theo thứ tự là các điểm đối xứng với O qua AD và BC.
a) Chứng minh rằng các tứ giác AODE,BOCF là hình vuông.
b) Nối EC cắt DF tại I. Chứng minh rằng OI ⊥ CD.
c) Biết diện tích hình lục giác ABFCDE = 6 .Tính độ dài các cạnh của hình vuông ABCD.
d) Lấy K là 1 điểm bất kì trên BC. Gọi G là trọng tâm của tam giác AIK. Chứng minh G thuộc 1 đường thẳng cố định khi K di chuyển trên BC.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Gọi giao điểm của AD và EO là T
Giao điểm của BC và OF là H
Xét tứ giác EAOD có
\(\left\{ \begin{array}{l}AT = TD\\ET = TO\end{array} \right.\) ⇒ EAOD là hình bình hành
Mà AD⊥EO nên tứ giác EAOD là hình thoi.
Hình thoi EAOD có \(\widehat {AOD} = 90^\circ \)nên là hình vuông.
Vậy EAOD là hình vuông theo dấu hiệu nhận biết hình thoi có 1 góc vuông.
Chứng minh tương tự với tứ giác OBFC.
b) Xét 2 tam giác ECF và FDE có:
\(\widehat {CFE} = \widehat {DEF} = 45^\circ \)
EF chung
FC = DE
Nên: ∆ECF = ∆FDE (c.g.c)
Suy ra: \(\widehat {FEC} = \widehat {EFD}\)
Vậy tam giác EFI cân
Mà O là trung điểm của EF ⇒ OI ⊥ EF
c) Ta có:
ΔAED = ΔABO = ΔBCO = ΔCOD = ΔDOA = ΔBFC
SΔAED + SΔABO + SΔBCO + SΔCOD + SΔDOA + SΔBFC = SABCDFE = 6
Suy ra: SΔABO = SΔBCO = SΔCOD = SΔDOA = 1
SABCD = SΔABO + SΔBCO + SΔCOD + SΔDOA = 4
AB = BC = CD = AD = 2
d) Gọi M là giao điểm của IO với AB, N là giao điểm của IM cới AK, ta có:
IO ⊥ FE ⇒ IO ⊥ AB
⇒ OM ⊥ AB, mà O là trung điểm của của HT nên M là trung điểm của AB.
Xét tam giác ABK có:
MA = MB(cmt)
MN // BK (vì MO//CD)
Do đó NA = NK là trung điểm của AK⇒ IN là đường trung tuyến của ΔAIK.
Mà G là trọng tậm tam giác nên G ∈ IN ⇒ G ∈ IM với IM cố định (I,M cố định).
Vậy điểm G luôn nằm trên đường thẳng cố định IM.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một vận động viên bơi về phía Bắc với vận tốc 1,7 m/s. Nước sông chảy với vận tốc 1 m/s về phía Đông. Tính độ lớn và hướng vận tốc tổng hợp của vận động viên?
Câu 2:
Hàm số y = f(x2 + 2x) nghịch biến trên khoảng nào?
x |
–∞ |
–2 |
1 |
3 +∞ |
f'(x) |
– |
0 + |
0 – |
0 – |
Câu 3:
Cho tam giác ABC có \(\widehat B = 60^\circ ,\widehat C = 45^\circ ,BC = a\).
a) Tính AB, AC.
b) Chứng minh \(\cos 75^\circ = \frac{{\sqrt 6 - \sqrt 2 }}{4}\).
Câu 4:
Cho hàm số y = \(\frac{{x + 1}}{{x - 3}}\) có đồ thị (C) và các đường thẳng d1: y = 2x, d2: y = 2x – 2, d3: y = 3x + 3, d4: y = –x + 3. Hỏi có bao nhiêu đường thẳng trong 4 đường thẳng d1, d2, d3, d4 đi qua giao điểm của (C) và trục hoành.
Câu 6:
Một tập thể gồm 14 người gồm 6 nam và 8 nữ trong đó có An và Bình người ta muốn chọn một tổ công tác gồm 6 người. Tìm số cách chọn tổ sao cho có 1 tổ trưởng 5 tổ viên trong đó An và Bình không đồng thời có mặt.
về câu hỏi!