Cho đường thẳng d cắt đường tròn (O;R) tại 2 điểm C, D. M là 1 điểm thuộc d và nằm ngoài (O;R) (MC < MD). Vẽ 2 tiếp tuyến MA, MB với (O;R). H là trung điểm của CD. Đường thẳng AB cắt OH tại E. Chứng minh ED là tiếp tuyến của (O; R).
Cho đường thẳng d cắt đường tròn (O;R) tại 2 điểm C, D. M là 1 điểm thuộc d và nằm ngoài (O;R) (MC < MD). Vẽ 2 tiếp tuyến MA, MB với (O;R). H là trung điểm của CD. Đường thẳng AB cắt OH tại E. Chứng minh ED là tiếp tuyến của (O; R).
Quảng cáo
Trả lời:

Ta có: MA, MB là tiếp tuyến của (O)
Nên MA = MB và MO là phân giác \(\widehat {AMB}\)
Suy ra: MO vuông góc AB
Gọi H là trung điểm DC; T là giao điểm AE và OM
Suy ra: OH vuông góc DC. OT vuông góc AB (tính chất)
Xét tam giác OHM và tam giác OTE có:
Chung \(\widehat O\)
\(\widehat {OTE} = \widehat {OHM} = 90^\circ \)
⇒ ∆OTE ∽ ∆OHM (g.g)
⇒ \(\frac{{OH}}{{OT}} = \frac{{OM}}{{OE}}\)
⇒ OH.OE = OM.OT
Tam giác AOM vuông tại A có AT là đường cao nên OA2 = OT.OM
Mà OA = OD nên OD2 = OT.OM = OH.OE
⇒ \(\frac{{OD}}{{OH}} = \frac{{OE}}{{OD}}\)
Xét ∆ODH và ∆OED có:
\(\frac{{OD}}{{OH}} = \frac{{OE}}{{OD}}\)
\(\widehat {DOH}\)chung
⇒ ∆ODH ∽ ∆OED (g.g)
⇒ \(\widehat {ODE} = \widehat {OHD} = 90^\circ \)
⇒ OD vuông góc ED tại D
Vậy ED là tiếp tuyến (O).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Độ lớn vận tốc tổng hợp của vận động viên là:
\(\overrightarrow v \)tổng hợp = \(\overrightarrow v \) + \(\overrightarrow v \)nước
Suy ra: vtổng hợp = \(\sqrt {{v^2} + {v_{nuoc}}^2} = \sqrt {1,{7^2} + {1^2}} = 1,97\left( {m/s} \right)\)
Hướng vận tốc tổng hợp của vận động viên hợp với bờ sông 1 góc là:
\(\tan \alpha = \frac{v}{{{v_{nuoc}}}} = \frac{{1,7}}{1} = 1,7 \Rightarrow \alpha \approx 59,53^\circ \)
Lời giải
y = f(x2 + 2x)
y' = (2x + 2)f'(x2 + 2x)
Xét y' = 0 ta có: (2x + 2)f'(x2 + 2x) = 0
⇒ \(\left[ \begin{array}{l}2x + 2 = 0\\f'\left( {{x^2} + 2x} \right) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 1\\{x^2} + 2x = - 2\\{x^2} + 2x = 1\\{x^2} + 2x = 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 1\\x = - 3\\x = - 1 + \sqrt 2 \\x = - 1 - \sqrt 2 \end{array} \right.\)
Ta có bảng biến thiên:

Vậy hàm số nghịch biến trên (–3; –1) và (1; +∞)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.