Câu hỏi:
11/07/2024 1,704Cho đường thẳng d cắt đường tròn (O;R) tại 2 điểm C, D. M là 1 điểm thuộc d và nằm ngoài (O;R) (MC < MD). Vẽ 2 tiếp tuyến MA, MB với (O;R). H là trung điểm của CD. Đường thẳng AB cắt OH tại E. Chứng minh ED là tiếp tuyến của (O; R).
Quảng cáo
Trả lời:
Ta có: MA, MB là tiếp tuyến của (O)
Nên MA = MB và MO là phân giác \(\widehat {AMB}\)
Suy ra: MO vuông góc AB
Gọi H là trung điểm DC; T là giao điểm AE và OM
Suy ra: OH vuông góc DC. OT vuông góc AB (tính chất)
Xét tam giác OHM và tam giác OTE có:
Chung \(\widehat O\)
\(\widehat {OTE} = \widehat {OHM} = 90^\circ \)
⇒ ∆OTE ∽ ∆OHM (g.g)
⇒ \(\frac{{OH}}{{OT}} = \frac{{OM}}{{OE}}\)
⇒ OH.OE = OM.OT
Tam giác AOM vuông tại A có AT là đường cao nên OA2 = OT.OM
Mà OA = OD nên OD2 = OT.OM = OH.OE
⇒ \(\frac{{OD}}{{OH}} = \frac{{OE}}{{OD}}\)
Xét ∆ODH và ∆OED có:
\(\frac{{OD}}{{OH}} = \frac{{OE}}{{OD}}\)
\(\widehat {DOH}\)chung
⇒ ∆ODH ∽ ∆OED (g.g)
⇒ \(\widehat {ODE} = \widehat {OHD} = 90^\circ \)
⇒ OD vuông góc ED tại D
Vậy ED là tiếp tuyến (O).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
Đã bán 1,5k
Đã bán 986
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một vận động viên bơi về phía Bắc với vận tốc 1,7 m/s. Nước sông chảy với vận tốc 1 m/s về phía Đông. Tính độ lớn và hướng vận tốc tổng hợp của vận động viên?
Câu 2:
Hàm số y = f(x2 + 2x) nghịch biến trên khoảng nào?
x |
–∞ |
–2 |
1 |
3 +∞ |
f'(x) |
– |
0 + |
0 – |
0 – |
Câu 3:
Cho đường tròn (O;R) đường kính AB. Vẽ tiếp tuyến Bx của (O). Trên cùng 1 nửa mặt phẳng bờ AB có chứa Bx, lấy điểm M thuộc (O) (M khác A và B) sao cho MA > MB. Tia AM cắt Bx tại C. Từ C kẻ tiếp tuyến thứ hai CD với (O) (D là tiếp điểm)
a) Chứng minh OC ⊥ BD.
b) Chứng minh bốn điểm O, B, C, D cùng thuộc một đường tròn.
c) Chứng minh \(\widehat {CMD} = \widehat {CDA}\).
d) Kẻ MH vuông góc với AB tại H. Tìm vị trí của M để chu vi tam giác OMH đạt giá trị lớn nhất.
Câu 4:
Cho tam giác ABC có \(\widehat B = 60^\circ ,\widehat C = 45^\circ ,BC = a\).
a) Tính AB, AC.
b) Chứng minh \(\cos 75^\circ = \frac{{\sqrt 6 - \sqrt 2 }}{4}\).
Câu 5:
Một tập thể gồm 14 người gồm 6 nam và 8 nữ trong đó có An và Bình người ta muốn chọn một tổ công tác gồm 6 người. Tìm số cách chọn tổ sao cho có 1 tổ trưởng 5 tổ viên trong đó An và Bình không đồng thời có mặt.
Câu 7:
Cho hàm số y = \(\frac{{x + 1}}{{x - 3}}\) có đồ thị (C) và các đường thẳng d1: y = 2x, d2: y = 2x – 2, d3: y = 3x + 3, d4: y = –x + 3. Hỏi có bao nhiêu đường thẳng trong 4 đường thẳng d1, d2, d3, d4 đi qua giao điểm của (C) và trục hoành.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận