Câu hỏi:
13/07/2024 450Cho M(4; 1); (d) là đường thẳng luôn đi qua M và cắt Ox, Oy theo thứ tự tại A(a; 0); B(0; b). Hãy viết phương trình đường thẳng (d) sao cho SOAB = 2.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đường thẳng AB đi qua A(a; 0); B(0; b) nên có phương trình: \(\frac{x}{a} + \frac{y}{b} = 1\).
M(4; 1) thuộc AB nên \(\frac{4}{a} + \frac{1}{b} = 1\) (1).
Tam giác AOB vuông tại O nên có diện tích là:
SOAB = \(\frac{1}{2}.OA.OB = \frac{1}{2}ab = 2\). Suy ra: ab = 4. (2).
Từ (1) và (2) ta có:
\(\left\{ \begin{array}{l}\frac{4}{a} + \frac{1}{b} = 1\\ab = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4b + a = ab\\ab = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 4 - 4b\\b\left( {4 - 4b} \right) - 4 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 4 - 4b\\ - 4{b^2} + 4b - 4 = 0\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l}a = 4 - 4b\\ - \left( {4{b^2} - 4b + 4} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 4 - 4b\\ - \left( {4{b^2} - 4b + 4} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 4 - 4b\\ - {\left( {2b - 1} \right)^2} - 3 = 0\end{array} \right.\).
Ta thấy –(2b – 1)2 – 3 ≤ – 3 với mọi b nên phương trình –(2b – 1)2 – 3 = 0 vô nghiệm.
Vậy không có đường thẳng (d) thỏa mãn.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một vận động viên bơi về phía Bắc với vận tốc 1,7 m/s. Nước sông chảy với vận tốc 1 m/s về phía Đông. Tính độ lớn và hướng vận tốc tổng hợp của vận động viên?
Câu 2:
Hàm số y = f(x2 + 2x) nghịch biến trên khoảng nào?
x |
–∞ |
–2 |
1 |
3 +∞ |
f'(x) |
– |
0 + |
0 – |
0 – |
Câu 3:
Cho tam giác ABC có \(\widehat B = 60^\circ ,\widehat C = 45^\circ ,BC = a\).
a) Tính AB, AC.
b) Chứng minh \(\cos 75^\circ = \frac{{\sqrt 6 - \sqrt 2 }}{4}\).
Câu 4:
Cho hàm số y = \(\frac{{x + 1}}{{x - 3}}\) có đồ thị (C) và các đường thẳng d1: y = 2x, d2: y = 2x – 2, d3: y = 3x + 3, d4: y = –x + 3. Hỏi có bao nhiêu đường thẳng trong 4 đường thẳng d1, d2, d3, d4 đi qua giao điểm của (C) và trục hoành.
Câu 6:
Một tập thể gồm 14 người gồm 6 nam và 8 nữ trong đó có An và Bình người ta muốn chọn một tổ công tác gồm 6 người. Tìm số cách chọn tổ sao cho có 1 tổ trưởng 5 tổ viên trong đó An và Bình không đồng thời có mặt.
về câu hỏi!