Câu hỏi:

12/07/2024 1,408

Một hộp đựng 20 viên bi khác nhau được đánh số từ 1 đến 20. Lấy ba viên bi từ hộp trên rồi cộng số ghi trên đó lại. Hỏi có bao nhiêu cách lấy để kết quả thu được là một số chia hết cho 3?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

20 viên bi khác nhau được đánh số từ 1 đến 20, chia làm ba phần:

Phần 1 gồm các viên bi mang số chia hết cho 3, có 6viên.

Phần 2 gồm các viên bi mang số chia cho 3 dư 1, có 7 viên.

Phần 3 gồm các viên bi mang số chia cho 3 dư 2, có 7 viên.

Lấy ba viên bi từ hộp trên rồi cộng số ghi trên đó lại, được một số chia hết cho 3 có các trường hợp sau:

Trường hợp 1: lấy được 3 viên bi ở phần 1, có  C63  cách.

Trường hợp 2: lấy được 3 viên bi ở phần 2, có  C73 cách.

Trường hợp 3: lấy được 3 viên bi ở phần 3, có C73 cách.

Trường hợp 4: lấy được 1 viên bi ở phần 1, 1 viên bi ở phần 2 và 1 viên bi ở phần 3, có  C61.C71.C71 cách.

Vậy có  C63+C73+C73+C61.C71.C71=384 cách lấy được ba viên bi thỏa mãn yêu cầu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giá trị lớn nhất của biết thức F (x; y) = x + 2y với điều kiện 0<=y<4 và x>=0 và x-y-1<0 và x+ 2y-10<0  là (ảnh 1)
Vẽ đường thẳng d1: x − y − 1 = 0, đường thẳng d1 qua hai điểm (0; −1) và (1; 0).

Xét điểm O(0; 0) thay vào phương trình đường thẳng, ta có 0 − 0 − 1 = −1 < 0.

Thoả mãn bất phương trình x − y − 1 ≤ 0.

Vậy O(0; 0) thuộc miền nghiệm của bất phương trình.

Do đó miền nghiệm D1 là nửa mặt phẳng không bị gạch được chia bởi đường thẳng d1 chứa gốc tọa độ O kể cả bờ.

Vẽ đường thẳng d2: x + 2y − 10 = 0, đường thẳng d2 qua hai điểm (0; 5) và (10; 0).

Xét điểm O(0; 0) thay vào phương trình đường thẳng ta có 0 + 2.0 − 10 = −10 < 0. Thoả mãn bất phương trình x + 2y − 10 ≤ 0.

Vậy điểm O(0; 0) thuộc miền nghiệm của bất phương trình.

Do đó miền nghiệm D2 là nửa mặt phẳng không bị gạch được chia bởi đường thẳng d2 chứa gốc tọa độ O kể cả bờ.

Vẽ đường thẳng d3: y = 4.

Xét điểm O(0; 0) thay vào phương trình đường thẳng ta có 0 < 4.

Thoả mãn bất phương trình 0 ≤ y ≤ 4.

Vậy điểm O(0; 0) thuộc miền nghiệm của bất phương trình.

Do đó miền nghiệm D3 là nửa mặt phẳng không bị gạch được chia bởi đường thẳng d3 chứa gốc tọa độ O kể cả bờ.

x ≥ 0 có miền nghiệm là nửa mặt phẳng nằm bên phải trục tung (kể cả trục tung).

y ≥ 0 có miền nghiệm là nửa mặt phẳng nằm phía trên trục hoành (kể cả trục hoành).

Miền nghiệm là phần không bị gạch như hình vẽ.

Miền nghiệm là ngũ giác ABCOE với A(4; 3), B(2; 4), C(0; 4), O(0; 0), E(1; 0).

Nhận thấy biểu thức F (x; y) = x + 2y đạt giá trị lớn nhất tại các điểm A, B, C, O, E.

Do F (x; y) = x + 2y suy ra:

F(4; 3) = 4 + 2.3 = 10;

F(0; 4) = 0 + 2.4 = 8;

F(2; 4) = 2 + 2.4 = 10;

F(1; 0) = 1 + 2.0 = 1;

F(0; 0) = 0 + 2.0 = 0.

Vậy giá trị lớn nhất của biết thức F(x; y) = x + 2y bằng 10.

 

Lời giải

Ta giải các hệ phương trình:

   2xy=2x2y=2x=23y=23

 2xy=2x+y=5x=73y=83

 x2y=2x+y=5x=4y=1

Khi đó F (x; y) đạt GTNN tại một trong các điểm  23;23,73;83,4;1.

Xét điểm  23;23, thay tọa độ điểm này vào hệ ta thấy thỏa mãn nên nó thuộc miền nghiệm.

Xét điểm (4; 1), thay tọa độ của điểm này vào hệ ta thấy thỏa mãn nên nó thuộc miền nghiệm.

Ta tính được  F23;23=2323=43;

F (4; 1) = 1 − 4 = −3.

Vậy F (x; y) đạt GTNN tại x = 4; y = 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP