Câu hỏi:
20/09/2023 7,596Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, \[\widehat {BAD} = 60^\circ ,\] SA = a và SA vuông góc với mặt phẳng đáy. Khoảng cách từ B đến mặt phẳng (SCD) bằng:
Quảng cáo
Trả lời:
Đáp án đúng là: A
Ta có: AB // (SCD)
⇒ d(B; (SCD)) = d(A; (SCD)) = d
Kẻ AH ⊥ CD; AK ⊥ SH
\(\left\{ {\begin{array}{*{20}{c}}{CD \bot SA}\\{CD \bot AH}\end{array} \Rightarrow CD \bot \left( {SAH} \right)} \right.\)
⇒ CD ⊥ AK ⇒ AK ⊥ (SCD)
⇒ d(B; (SCD)) = d = AK.
Xét ∆AHD vuông tại H, \[\widehat {ADH} = 60^\circ \]
ta có: \(AH = AD \cdot {\rm{sin}}60^\circ = \frac{{a\sqrt 3 }}{2}\)
Áp dụng hệ thức lượng trong tam giác vuông SHA vuông tại A có đường cao AK ta có: \(AK = \frac{{SA \cdot AH}}{{\sqrt {S{A^2} + A{H^2}} }}\)\( = \frac{{a \cdot \frac{{a\sqrt 3 }}{2}}}{{\sqrt {{a^2} + \frac{{3{a^2}}}{4}} }} = \frac{{a\sqrt {21} }}{7} = d.\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Xét phương trình hoành độ giao điểm của hai đồ thị hàm số ta có:
\(\frac{{x - 3}}{{x - 2}} + \frac{{x - 2}}{{x - 1}} + \frac{{x - 1}}{x} + \frac{x}{{x + 1}} = \left| {x + 2} \right| - x + m\)
\( \Leftrightarrow \frac{{x - 3}}{{x - 2}} + \frac{{x - 2}}{{x - 1}} + \frac{{x - 1}}{x} + \frac{x}{{x + 1}} - \left| {x + 2} \right| + x = m\)
Xét hàm số \(f\left( x \right) = \frac{{x - 3}}{{x - 2}} + \frac{{x - 2}}{{x - 1}} + \frac{{x - 1}}{x} + \frac{x}{{x + 1}} - \left| {x + 2} \right| + x\) có TXĐ: D = ℝ ∖ {‒1; 0; 1; 2}.
\(f'\left( x \right) = \frac{1}{{{{(x - 2)}^2}}} + \frac{1}{{{{(x - 1)}^2}}} + \frac{1}{{{x^2}}} + \frac{1}{{{{(x + 1)}^2}}} - \frac{{x + 2}}{{\left| {x + 2} \right|}} + 1\)
\( = \frac{1}{{{{(x - 2)}^2}}} + \frac{1}{{{{(x - 1)}^2}}} + \frac{1}{{{x^2}}} + \frac{1}{{{{(x + 1)}^2}}} + \frac{{\left| {x + 2} \right| - \left( {x + 2} \right)}}{{\left| {x + 2} \right|}}\)
\( \Rightarrow f'\left( x \right) > 0\forall x \in D\)
Do \(\left| {x + 2} \right| \ge x + 2\forall x \Rightarrow \left| {x + 2} \right| - \left( {x + 2} \right) \ge 0 \Leftrightarrow \frac{{\left| {x + 2} \right| - \left( {x + 2} \right)}}{{\left| {x + 2} \right|}} \ge 0\)
\( \Rightarrow f'\left( x \right) > 0\forall x \in D \Rightarrow \) Hàm số đồng biến trên từng khoảng xác định của nó.
Ta có bảng biến thiên:
Từ bảng biến thiên ta thấy phương trình f(x) = m có đúng 4 nghiệm phân biệt khi và chỉ khi m ≥ 2.
Lời giải
Đáp án đúng là: D
Ta có đồ thị hàm số \[y = \frac{{ax + 2}}{{cx + b}}\] đi qua điểm có tọa độ (0; −1)
Thay x = 0; y = −1 vào hàm số ta được \[ - 1 = \frac{{a \cdot 0 + 2}}{{c \cdot 0 + b}} \Rightarrow b = - 2.\]
Đồ thị hàm số \[y = \frac{{ax + 2}}{{cx - 2}}\]có ⇒ a = 1; b = −2; c = 1
Đáp án cần chọn là: D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận