Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
c) Trong mặt phẳng (ABCD), gọi R là giao điểm của AM và BN.
Khi đó R ∈ (SAM) ∩ (SBN).
Mà S ∈ (SAM) ∩ (SBN).
Vậy SR là giao tuyến của hai mặt phẳng (SAM) và (SBN).
Đã bán 211
Đã bán 244
Đã bán 1k
Đã bán 218
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của các cạnh BC, CD.
a) Xác định giao tuyến của hai mặt phẳng (SAM) và (SCD).
Câu 2:
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AB, AC. Gọi P là điểm thuộc cạnh AD sao cho AP = 2DP. Xác định giao tuyến của hai mặt phẳng (MNP) và (BCD).
Câu 3:
Cho hình chóp S.ABCD. Gọi O là giao điểm của AC và BD và gọi M là một điểm bất kì thuộc cạnh SC.
a) Xác định giao tuyến của hai mặt phẳng (AMO) và (SCD).
Câu 4:
Cho tứ diện ABCD. Gọi E, F là các điểm lần lượt thuộc các cạnh AB, AC sao cho AE = BE và AF = 2CF. Gọi O là một điểm nằm trong tam giác BCD.
a) Xác định giao tuyến của hai mặt phẳng (OEF) và (ABD).
Câu 5:
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AB, CD. Gọi P là một điểm thuộc cạnh BC sao cho PC = 2PB.
a) Xác định giao điểm của đường thẳng BD và mặt phẳng (MNP).
Câu 6:
Cho hình chóp S.ABCD. Gọi O là một điểm nằm trong tam giác SCD.
a) Xác định giao tuyến của hai mặt phẳng (SBO) và (SAC).
Câu 7:
Cho tứ diện ABCD và các điểm M, N, P lần lượt thuộc các cạnh AB, AC, AD. Gọi O là một điểm nằm trong tam giác BCD.
a) Xác định giao tuyến của hai mặt phẳng (ABO) và (ACD).
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận