Cho hình tứ diện SABC và các điểm A', B', C' lần lượt thuộc các cạnh SA, SB, SC. Giả sử hai đường thẳng B'C' và BC cắt nhau tại D, hai đường thẳng C'A' và CA cắt nhau tại E và hai đường thẳng A'B' và AB cắt nhau tại F. Chứng minh rằng ba điểm D, E, F thẳng hàng.
Cho hình tứ diện SABC và các điểm A', B', C' lần lượt thuộc các cạnh SA, SB, SC. Giả sử hai đường thẳng B'C' và BC cắt nhau tại D, hai đường thẳng C'A' và CA cắt nhau tại E và hai đường thẳng A'B' và AB cắt nhau tại F. Chứng minh rằng ba điểm D, E, F thẳng hàng.
Quảng cáo
Trả lời:

Ta có D là giao điểm của hai đường thẳng B'C' và BC nên D là một điểm chung của hai mặt phẳng (ABC) và (A'B'C).
E là giao điểm của hai đường thẳng A'C' và AC nên E là một điểm chung của hai mặt phẳng (ABC) và (A'B'C).
F là giao điểm của hai đường thẳng A'B' và AB nên F là một điểm chung của hai mặt phẳng (ABC) và (A'B'C).
Do đó, ba điểm D, E, F cùng thuộc giao tuyến của hai mặt phẳng (ABC) và (A'B'C) nên ba điểm đó thẳng hàng.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Trong mặt phẳng (ABCD), gọi P là giao điểm của AM và CD.
Khi đó P ∈ (SAM) ∩ (SCD).
Mà S ∈ (SAM) ∩ (SCD).
Vậy SP là giao tuyến của hai mặt phẳng (SAM) và (SCD).
Lời giải

Trong mặt phẳng (ABD) gọi E là giao điểm của MP và BD, trong mặt phẳng (ACD) gọi F là giao điểm của NP và CD.
Khi đó E ∈ (MNP) ∩ (BCD) và F ∈ (MNP) ∩ (BCD).
Vậy đường thẳng EF là giao tuyến của hai mặt phẳng (MNP) và (BCD).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.