Cho hình tứ diện SABC và các điểm A', B', C' lần lượt thuộc các cạnh SA, SB, SC. Giả sử hai đường thẳng B'C' và BC cắt nhau tại D, hai đường thẳng C'A' và CA cắt nhau tại E và hai đường thẳng A'B' và AB cắt nhau tại F. Chứng minh rằng ba điểm D, E, F thẳng hàng.
Cho hình tứ diện SABC và các điểm A', B', C' lần lượt thuộc các cạnh SA, SB, SC. Giả sử hai đường thẳng B'C' và BC cắt nhau tại D, hai đường thẳng C'A' và CA cắt nhau tại E và hai đường thẳng A'B' và AB cắt nhau tại F. Chứng minh rằng ba điểm D, E, F thẳng hàng.
Quảng cáo
Trả lời:

Ta có D là giao điểm của hai đường thẳng B'C' và BC nên D là một điểm chung của hai mặt phẳng (ABC) và (A'B'C).
E là giao điểm của hai đường thẳng A'C' và AC nên E là một điểm chung của hai mặt phẳng (ABC) và (A'B'C).
F là giao điểm của hai đường thẳng A'B' và AB nên F là một điểm chung của hai mặt phẳng (ABC) và (A'B'C).
Do đó, ba điểm D, E, F cùng thuộc giao tuyến của hai mặt phẳng (ABC) và (A'B'C) nên ba điểm đó thẳng hàng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Trong mặt phẳng (ABCD), gọi P là giao điểm của AM và CD.
Khi đó P ∈ (SAM) ∩ (SCD).
Mà S ∈ (SAM) ∩ (SCD).
Vậy SP là giao tuyến của hai mặt phẳng (SAM) và (SCD).
Lời giải

a) Trong mặt phẳng (ABC), gọi G là giao điểm của EF và BC.
Trong mặt phẳng (BCD), gọi H là giao điểm của OG và BD.
Khi đó H là một điểm chung của hai mặt phẳng (OEF) và (ABD).
Lại có E ∈ (OEF) và E ∈ AB ⊂ (ABD) nên E ∈ (OEF) ∩ (ABD).
Vậy EH là giao tuyến của hai mặt phẳng (OEF) và (ABD).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.