Câu hỏi:

13/07/2024 2,984 Lưu

Cho hai mặt phẳng (P) và (Q) cắt nhau theo giao tuyến d và một điểm O nằm ngoài cả hai mặt phẳng đó. Gọi A, B là hai điểm phân biệt thuộc mặt phẳng (P) sao cho AB cắt d tại C. Gọi D, E lần lượt là giao điểm của hai đường thẳng OA, OB và mặt phẳng (Q). Chứng minh rằng ba điểm C, D, E thẳng hàng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hai mặt phẳng (P) và (Q) cắt nhau theo giao tuyến d và một điểm O nằm ngoài cả hai mặt phẳng đó. Gọi A, B là hai điểm phân (ảnh 1)

Ta có C là giao điểm của hai đường thẳng AB và d nên C là một điểm chung của hai mặt phẳng (OAB) và (Q).

D là giao điểm của đường thẳng OA và mặt phẳng (Q) nên D là một điểm chung của hai mặt phẳng (OAB) và (Q).

E là giao điểm của đường thẳng OB và mặt phẳng (Q) nên E là một điểm chung của hai mặt phẳng (OAB) và (Q).

Do đó, ba điểm C, D, E đều thuộc giao tuyến của hai mặt phẳng (OAB) và (Q) nên ba điểm đó thẳng hàng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của các cạnh BC, CD.   (ảnh 1)

a) Trong mặt phẳng (ABCD), gọi P là giao điểm của AM và CD.

Khi đó P (SAM) ∩ (SCD).

Mà S (SAM) ∩ (SCD).

Vậy SP là giao tuyến của hai mặt phẳng (SAM) và (SCD).

Lời giải

Cho tứ diện ABCD. Gọi E, F là các điểm lần lượt thuộc các cạnh AB, AC sao cho (ảnh 1)

a) Trong mặt phẳng (ABC), gọi G là giao điểm của EF và BC.

Trong mặt phẳng (BCD), gọi H là giao điểm của OG và BD.

Khi đó H là một điểm chung của hai mặt phẳng (OEF) và (ABD).

Lại có E (OEF) và E AB (ABD) nên E (OEF) ∩ (ABD).

Vậy EH là giao tuyến của hai mặt phẳng (OEF) và (ABD).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP