Câu hỏi:

12/07/2024 2,594 Lưu

Cho tứ diện ABCD. Một mặt phẳng cắt các cạnh AB, BC, CD, DA của tứ diện lần lượt tại các điểm M, N, P, Q. Khi đó

A. MN, AC, PQ đồng quy.

B. MN, AC, PQ đôi một song song.

C. MN, AC, PQ đôi một chéo nhau.

D. MN, AC, PQ đôi một song song hoặc đồng quy.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Cho tứ diện ABCD. Một mặt phẳng cắt các cạnh AB, BC, CD, DA của tứ diện lần lượt tại các điểm M, N, P, Q. Khi đó (ảnh 1)

Ta có: (MNPQ) ∩ (ABC) = MN.

(ABC) ∩ (ACD) = AC.

(MNPQ) ∩ (ACD) = PQ.

Ba mặt phẳng (MNPQ), (ABC) và (ACD) đôi một cắt nhau theo ba giao tuyến MN, AC và PQ nên theo định lí về 3 đường giao tuyến thì MN, AC, PQ đôi một song song hoặc đồng quy.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD). Gọi d là giao tuyến của hai mặt phẳng (SAB) và (SCD). Khi đó d đi qua S và song song với (ảnh 1)

Hai mặt phẳng (SAB) và (SCD) có điểm chung là S và lần lượt chứa hai đường thẳng AB, CD song song với nhau nên giao tuyến của chúng là đường thẳng d đi qua S và song song với CD.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP