Câu hỏi:

12/07/2024 1,340

Cho hình lăng trụ tứ giác ABCD.A'B'C'D'. Gọi M, N, M', N' lần lượt là trung điểm của các cạnh AB, CD, A'B', C'D'.

a) Chứng minh rằng bốn điểm M, N, M', N' đồng phẳng và tứ giác MNN'M' là hình bình hành.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình lăng trụ tứ giác ABCD.A'B'C'D'. Gọi M, N, M', N' lần lượt là trung điểm của các cạnh AB, CD, A'B', C'D'. (ảnh 1)

a) Vì M, M' lần lượt là trung điểm của hai cạnh AB, A'B' của hình bình hành ABB'A' nên MM' // AA' và MM' = AA'.

Tương tự NN' // DD' và NN' = DD'.

Tứ giác ADD'A' là hình bình hành nên AA' // DD' và AA' = DD'.

Vì vậy MM' // NN' và MM' = NN', suy ra bốn điểm M, N, M', N' đồng phẳng và tứ giác MNN'M' là hình bình hành.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD). Gọi d là giao tuyến của hai mặt phẳng (SAB) và (SCD). Khi đó d đi qua S và song song với (ảnh 1)

Hai mặt phẳng (SAB) và (SCD) có điểm chung là S và lần lượt chứa hai đường thẳng AB, CD song song với nhau nên giao tuyến của chúng là đường thẳng d đi qua S và song song với CD.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP