Câu hỏi:
12/07/2024 1,436
Cho hình hộp ABCD.A'B'C'D'. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AA', BB', CC', DD'. Chứng minh rằng bốn điểm M, N, P, Q đồng phẳng và MNPQ là hình bình hành.
Cho hình hộp ABCD.A'B'C'D'. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AA', BB', CC', DD'. Chứng minh rằng bốn điểm M, N, P, Q đồng phẳng và MNPQ là hình bình hành.
Câu hỏi trong đề: Giải SBT Toán 11 KNTT Bài tập cuối chương 4 có đáp án !!
Quảng cáo
Trả lời:

Vì M, N lần lượt là trung điểm của hai cạnh AA', BB' của hình bình hành ABB'A' nên ta có MN // AB, suy ra MN // (ABCD).
Tương tự NP // (ABCD), do đó (MNP) // (ABCD).
Lập luận tương tự suy ra (NPQ) // (ABCD).
Qua điểm N có hai mặt phẳng (MNP) và (NPQ) cùng song song với mặt phẳng (ABCD) nên hai mặt phẳng (MNP) và (NPQ) trùng nhau, tức là bốn điểm M, N, P, Q đồng phẳng.
Ngoài ra từ M, N lần lượt là trung điểm của hai cạnh AA', BB' của hình bình hành ABB'A' ta suy ra được MN = AB.
Do đó, MN // AB và MN = AB.
Tương tự, ta chứng minh được PQ // CD và PQ = CD.
Mà AB // CD và AB = CD (do ABCD là hình bình hành).
Khi đó, MN // PQ và MN = PQ nên tứ giác MNPQ là hình bình hành.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B

Hai mặt phẳng (SAB) và (SCD) có điểm chung là S và lần lượt chứa hai đường thẳng AB, CD song song với nhau nên giao tuyến của chúng là đường thẳng d đi qua S và song song với CD.
Lời giải
Đáp án đúng là: B

Áp dụng định lý Thalès trong không gian, ta có .
Suy ra .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.