Câu hỏi:
25/09/2023 225Cho chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D; AB = AD = 2a. CD = a. Góc giữa 2 mặt phẳng (SBC) và (ABCD) bằng 60º. Gọi I là trung điểm của cạnh AD. Biết 2 mặt phẳng ( SBI) và (SCI) cùng vuông góc với mặt phẳng (ABCD). Tính thể tích của khối chóp S.ABCD theo a.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
\[\left\{ \begin{array}{l}(SIB) \bot (ABCD)\\(SIC) \bot (ABCD)\end{array} \right. \Rightarrow SI \bot (ABCD)\]
Kẻ IK ⊥ BC (K ∈ BC) Þ BC ⊥ (SIK)
\[ \Rightarrow \widehat {SKI} = 60^\circ \]
Diện tích hình thang ABCD: SABCD = 3a2
Tổng diện tích các tam giá ABI và CDI bằng \[\frac{{3{a^2}}}{2}\]suy ra \[{S_{\Delta IBC}} = \frac{{3{a^2}}}{2}\]
\[BC = \sqrt {{{\left( {AB - CD} \right)}^2} + A{D^2}} = a\sqrt 5 \]
\[ \Rightarrow IK = \frac{{2{S_{\Delta IBC}}}}{{BC}} = \frac{{3\sqrt 5 a}}{5}\]
\[ \Rightarrow SI = IK.\tan \widehat {SKI} = \frac{{3\sqrt {15} a}}{5}\]
Thể tích của khối chóp S.ABCD là: \[V = \frac{1}{3}{S_{ABCD}}.SI = \frac{{3\sqrt {15} {a^2}}}{5}\]
Vậy thể tích của khối chóp S.ABCD là \[\frac{{3\sqrt {15} {a^2}}}{5}\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y = ax3 + bx2 + cx + d (a, b, c, d ∈ ℝ) có đồ thị là đường cong trong hình bên. Có bao nhiêu số dương trong các số a, b, c, d?
Câu 2:
Cho A = (m; m + 1); B = (1; 4). Tìm m để \[A \cap B \ne \emptyset \].
Câu 3:
Cho hai tập hợp A = [−2; 3] ; B = (m; m + 6). Tìm điều kiện để A ⊂ B.
Câu 4:
Cho \[\sin \alpha = \frac{2}{3}\]. Tính cos α, tan α biết 0 < α < 90º.
Câu 5:
Từ một miếng tôn có hình dạng là nửa hình tròn bán kính 1 m, người ta cắt ra một hình chữ nhật (phần tô đậm như hình vẽ). Tính diện tích lớn nhất có thể cắt được của phần hình chữ nhật.
Câu 6:
Tính các giá trị lượng giác còn lại của góc α biết \[\sin \,\alpha = \frac{1}{3}\] và 90° < α < 180°.
Câu 7:
Gieo đồng xu cân đối và đồng chất 5 lần liên tiếp. Tính xác suất để được ít nhất một lần xuất hiện mặt sấp.
về câu hỏi!