Câu hỏi:
26/09/2023 308Một bình đựng 5 viên bi xanh và 3 viên bi đỏ (các viên bi chỉ khác nhau về màu sắc). Lấy ngẫu nhiên một viên bi, rồi lấy ngẫu nhiên một viên bi nữa. Khi tính xác suất của biến cố “Lấy lần thứ hai được một viên bi xanh”, ta được kết quả:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: A
Gọi A là biến cố “Lấy lần thứ hai được một viên bi xanh”. Có hai trường hợp xảy ra
Biến cố B: Lấy lần thứ nhất được bi xanh, lấy lần thứ hai cũng được một bi xanh
Xác suất trong trường hợp này là \({P_B} = \frac{5}{8}.\frac{4}{7} = \frac{5}{{14}}\)
Biến cố C: Lấy lần thứ nhất được bi đỏ, lấy lần thứ hai được bi xanh
Xác suất trong trường hợp này là \({P_C} = \frac{3}{8}.\frac{5}{7} = \frac{{15}}{{56}}\)
Ta thấy 2 biến cố B và C là xung khắc nên \({P_A} = {P_B} + {P_C} = \frac{5}{{14}} + \frac{{15}}{{56}} = \frac{5}{8}\)
Vậy ta chọn đáp án A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y = f(x) xác định trên R\{1}, liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình vẽ:
Số giá trị nguyên của tham số m để phương trình f(x) = m có 3 nghiệm phân biệt là
Câu 2:
Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:
Bất phương trình f(x) < ex + m đúng với mọi x ∈ (–1; 1) khi và chỉ khi:
Câu 3:
Tìm m để phương trình x2 – 4x + m = 0 có 2 nghiệm phân biệt thuộc khoảng (0; 3).
Câu 4:
Cho phương trình \(\log _2^2x - 2{\log _2}x - \sqrt {m + {{\log }_2}x} = m\) (*). Có bao nhiêu giá trị nguyên của tham số m ∈ [–2019; 2019] để phương trình (*) có nghiệm?
Câu 5:
Cho tứ diện ABCD. Gọi H, K lần lượt là trung điểm của các cạnh AC, BC. Trong tam giác BCD lấy điểm M sao cho hai đường thẳng KM và CD cắt nhau tại I. Tìm thiết diện của tứ diện với (HKM) trong hai trường hợp:
a) I nằm trong đoạn CD.
b) I nằm ngoài đoạn CD.
Câu 6:
Bất phương trình \({\log _{\frac{2}{3}}}\left( {2{{\rm{x}}^2} - x - 1} \right) > 0\) có tập nghiệm là (a; b) ∪ (c; d). Tính tổng a + b + c + d.
Câu 7:
về câu hỏi!