Câu hỏi:
26/09/2023 481Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1; 2; –1); B(2; –1; 3); C(–3; 5; 1). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: B
Ta có: \(\overrightarrow {AB} \left( {1; - 3;4} \right),\overrightarrow {AC} \left( { - 4;3;2} \right)\) nên \(\overrightarrow {AB} ,\overrightarrow {AC} \) không cùng phương
Hay A, B, C không thẳng hàng
Gọi D(x; y; z) ta có \(\overrightarrow {DC} \left( { - 3 - x;5 - y;1 - z} \right)\)
ABCD là hình bình hành khi và chỉ khi
\(\overrightarrow {AB} = \overrightarrow {DC} \Leftrightarrow \left\{ \begin{array}{l}1 = - 3 - x\\ - 3 = 5 - y\\4 = 1 - z\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - 4\\y = 8\\z = - 3\end{array} \right.\)
Vậy ta chọn đáp án B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y = f(x) xác định trên R\{1}, liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình vẽ:
Số giá trị nguyên của tham số m để phương trình f(x) = m có 3 nghiệm phân biệt là
Câu 2:
Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:
Bất phương trình f(x) < ex + m đúng với mọi x ∈ (–1; 1) khi và chỉ khi:
Câu 3:
Tìm m để phương trình x2 – 4x + m = 0 có 2 nghiệm phân biệt thuộc khoảng (0; 3).
Câu 4:
Cho phương trình \(\log _2^2x - 2{\log _2}x - \sqrt {m + {{\log }_2}x} = m\) (*). Có bao nhiêu giá trị nguyên của tham số m ∈ [–2019; 2019] để phương trình (*) có nghiệm?
Câu 5:
Cho tứ diện ABCD. Gọi H, K lần lượt là trung điểm của các cạnh AC, BC. Trong tam giác BCD lấy điểm M sao cho hai đường thẳng KM và CD cắt nhau tại I. Tìm thiết diện của tứ diện với (HKM) trong hai trường hợp:
a) I nằm trong đoạn CD.
b) I nằm ngoài đoạn CD.
Câu 6:
Bất phương trình \({\log _{\frac{2}{3}}}\left( {2{{\rm{x}}^2} - x - 1} \right) > 0\) có tập nghiệm là (a; b) ∪ (c; d). Tính tổng a + b + c + d.
Câu 7:
về câu hỏi!