Câu hỏi:
26/09/2023 358Cho hàm số đa thức f(x) có đạo hàm trên R. Biết f(0) = 0 và đồ thị hàm số y = f’(x) như hình sau:
Hàm số \(g\left( x \right) = \left| {4f\left( x \right) + {x^2}} \right|\) đồng biến trên khoảng nào dưới đây?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: B
Đặt h(x) = 4f(x) + x2
Ta có: \(h'(x) = 4f(x) + 2x = 4\left[ {f'(x) + \frac{x}{2}} \right]\)
Số nghiệm của phương trình h’(x) = 0 là số giao điểm của đồ thị hàm số y = f’(x) và đường thẳng \(y = - \frac{x}{2}\)
Vẽ đồ thị hàm số y = f’(x) và đường thẳng \(y = - \frac{x}{2}\) trên cùng mặt phẳng tọa độ ta có:
Dựa vào đồ thị hàm số ta thấy \(h'(x) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = - 2}\\{x = 0}\\{x = 4}\end{array}} \right.\)
Khi đó ta có BBT hàm số y = h(x):
Khi đó ta suy ra được BBT hàm số g(x) = |h(x)| như sau:
Dựa vào BBT ta thấy hàm số g(x) đồng biến trên (0; 4)
Vậy đáp án cần chọn là: B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y = f(x) xác định trên R\{1}, liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình vẽ:
Số giá trị nguyên của tham số m để phương trình f(x) = m có 3 nghiệm phân biệt là
Câu 2:
Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:
Bất phương trình f(x) < ex + m đúng với mọi x ∈ (–1; 1) khi và chỉ khi:
Câu 3:
Tìm m để phương trình x2 – 4x + m = 0 có 2 nghiệm phân biệt thuộc khoảng (0; 3).
Câu 4:
Cho phương trình \(\log _2^2x - 2{\log _2}x - \sqrt {m + {{\log }_2}x} = m\) (*). Có bao nhiêu giá trị nguyên của tham số m ∈ [–2019; 2019] để phương trình (*) có nghiệm?
Câu 5:
Cho tứ diện ABCD. Gọi H, K lần lượt là trung điểm của các cạnh AC, BC. Trong tam giác BCD lấy điểm M sao cho hai đường thẳng KM và CD cắt nhau tại I. Tìm thiết diện của tứ diện với (HKM) trong hai trường hợp:
a) I nằm trong đoạn CD.
b) I nằm ngoài đoạn CD.
Câu 6:
Bất phương trình \({\log _{\frac{2}{3}}}\left( {2{{\rm{x}}^2} - x - 1} \right) > 0\) có tập nghiệm là (a; b) ∪ (c; d). Tính tổng a + b + c + d.
Câu 7:
về câu hỏi!