Câu hỏi:
26/09/2023 511Cho hàm số \(y = \frac{{ax + b}}{{c{\rm{x}} - 1}}\) có đồ thị như hình vẽ bên dưới. Giá trị của tổng S = a + b + c bằng:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: C
Ta có:
Tiệm cận ngang: \(y = \frac{a}{c} = - 1\)
Tiệm cận đứng: \[{\rm{x}} = \frac{1}{c} = 1\]
Từ đây suy ra \(\left\{ \begin{array}{l}a = - 1\\c = 1\end{array} \right.\)
Lại có đồ thị cắt trục hoành tại x = 2 nên 2a + b = 0
Hay b = –2a = –2 . (–1) = 2
Ta có S = a + b + c = – 1 + 2 + 1 = 2
Vậy ta chọn đáp án C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y = f(x) xác định trên R\{1}, liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình vẽ:
Số giá trị nguyên của tham số m để phương trình f(x) = m có 3 nghiệm phân biệt là
Câu 2:
Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:
Bất phương trình f(x) < ex + m đúng với mọi x ∈ (–1; 1) khi và chỉ khi:
Câu 3:
Tìm m để phương trình x2 – 4x + m = 0 có 2 nghiệm phân biệt thuộc khoảng (0; 3).
Câu 4:
Cho phương trình \(\log _2^2x - 2{\log _2}x - \sqrt {m + {{\log }_2}x} = m\) (*). Có bao nhiêu giá trị nguyên của tham số m ∈ [–2019; 2019] để phương trình (*) có nghiệm?
Câu 5:
Cho tứ diện ABCD. Gọi H, K lần lượt là trung điểm của các cạnh AC, BC. Trong tam giác BCD lấy điểm M sao cho hai đường thẳng KM và CD cắt nhau tại I. Tìm thiết diện của tứ diện với (HKM) trong hai trường hợp:
a) I nằm trong đoạn CD.
b) I nằm ngoài đoạn CD.
Câu 6:
Bất phương trình \({\log _{\frac{2}{3}}}\left( {2{{\rm{x}}^2} - x - 1} \right) > 0\) có tập nghiệm là (a; b) ∪ (c; d). Tính tổng a + b + c + d.
Câu 7:
về câu hỏi!