Cho hình chóp S.ABCD có đáy ABCD là hình thang có đáy lớn BC, đáy nhỏ AD. Mặt bên (SAD) là tam giác đều, (α) là mặt phẳng đi qua M trên cạnh AB, song song với SA, BC. Mp (α) cắt các cạnh CD, SC, SB lần lượt tại N, P, Q. Tứ giác MNPQ là hình gì?
Cho hình chóp S.ABCD có đáy ABCD là hình thang có đáy lớn BC, đáy nhỏ AD. Mặt bên (SAD) là tam giác đều, (α) là mặt phẳng đi qua M trên cạnh AB, song song với SA, BC. Mp (α) cắt các cạnh CD, SC, SB lần lượt tại N, P, Q. Tứ giác MNPQ là hình gì?
Quảng cáo
Trả lời:
Đáp án đúng là: D

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BC\,{\rm{//}}\,(\alpha ),BC \subset (ABCD),BC \subset (SBC)}\\{(\alpha ) \cap (ABCD) = MN}\\{(\alpha ) \cap (SBC) = PQ}\end{array}} \right. \Rightarrow MN\,{\rm{//}}\,BC\,{\rm{//}}\,PQ\quad \)
Suy ra tứ giác MNPQ là hình thang (1)
Vì \(\left\{ {\begin{array}{*{20}{l}}{(\alpha ) \cap (SAB) = MQ}\\{(\alpha )\,{\rm{//}}\,SA,SA \subset (SAB)}\end{array} \Rightarrow SA\,{\rm{//}}\,MQ} \right.\)
Áp dụng định lý Ta – lét ta có:
\(\begin{array}{l}\frac{{AM}}{{AB}} = \frac{{SQ}}{{SB}} = \frac{{SP}}{{SC}};\frac{{AM}}{{AB}} = \frac{{DN}}{{DC}}\\ \Rightarrow \frac{{SP}}{{SC}} = \frac{{DN}}{{DC}} \Rightarrow NP\,{\rm{//}}\,SD\end{array}\)
Vì \(\left\{ {\begin{array}{*{20}{l}}{MQ\,{\rm{//}}\,SA}\\{MN\,{\rm{//}}\,BC\,{\rm{//}}\,AD}\end{array} \Rightarrow \widehat {NMQ} = \widehat {SAD}} \right.{\rm{ }}\)
Mà tam giác SAD đều nên \(\widehat {SA{\rm{D}}} = 60^\circ \)
Suy ra \(\widehat {NMQ} = 60^\circ \)
Chứng minh tương tự ta có \(\widehat {MNP} = \widehat {SDA} = 60^\circ \)
Do đó \(\widehat {NMQ} = \widehat {MNP}\) (2)
Từ (1) và (2) suy ra MNPQ là hình thang cân
Vậy đáp án cần chọn là: D.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Ta có sô nghiệm của phương trình f(x) = m bằng số giao điềm của đồ thị hàm số y = f(x) và đường thẳng y = m
Do đó, dựa vào bàng biến thiên ta thấy, phương trình f(x) = m có 3 nghiệm phân biệt khi và chỉ khi 0 < m < 3
Kết hợp điều kiện \(m \in \mathbb{Z}\) suy ra \(m \in \{ 1;2\} \)
Do đó có 2 giá trị nguyên của tham số m thòa mãn yêu cầu bài toán
Vậy ta chọn đáp án D.
Lời giải
Đặt \(f(x) = {x^2} - 4x + m\)
Để phương trình có 2 nghiệm thỏa mãn \(0 < {x_1} < {x_2} < 3\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\Delta ' > 0}\\{f(0) > 0}\\{f(3) > 0}\\{0 < \frac{S}{2} < 3}\end{array} \Leftrightarrow \left\{ \begin{array}{l}{4^2} - 4m > 0\\0 + m > 0\\{3^2} - 4.3 + m > 0\\0 < \frac{4}{2} < 3\end{array} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{4 - m > 0}\\{m > 0}\\{m - 3 > 0}\\{0 < 2 < 3}\end{array} \Leftrightarrow 3 < m < 4} \right.} \right.\)
Vậy 3 < m < 4.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.