Câu hỏi:

26/09/2023 493

Tính \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {1 + 2{\rm{x}}} \cdot \sqrt[3]{{1 + 3{\rm{x}}}} \cdot \sqrt[4]{{1 + 4{\rm{x}}}} - 1}}{x}\).

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Ta có: \(\sqrt {1 + 2{\rm{x}}} \cdot \sqrt[3]{{1 + 3{\rm{x}}}} \cdot \sqrt[4]{{1 + 4{\rm{x}}}} - 1\)

\( = \sqrt {1 + 2{\rm{x}}} - \sqrt {1 + 2{\rm{x}}} + \sqrt {1 + 2{\rm{x}}} .\sqrt[3]{{1 + 3{\rm{x}}}} - \sqrt {1 + 2{\rm{x}}} \cdot \sqrt[3]{{1 + 3{\rm{x}}}} + \sqrt {1 + 2{\rm{x}}} \cdot \sqrt[3]{{1 + 3{\rm{x}}}} \cdot \sqrt[4]{{1 + 4{\rm{x}}}} - 1\)\( = \left( {\sqrt {1 + 2{\rm{x}}} - 1} \right) + \sqrt {1 + 2{\rm{x}}} \cdot \left( {\sqrt[3]{{1 + 3{\rm{x}}}} - 1} \right) + \sqrt {1 + 2{\rm{x}}} \cdot \sqrt[3]{{1 + 3{\rm{x}}}}\left( {1 + \sqrt[4]{{1 + 4{\rm{x}}}}} \right)\)

Suy ra: \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {1 + 2{\rm{x}}} .\sqrt[3]{{1 + 3{\rm{x}}}}.\sqrt[4]{{1 + 4{\rm{x}}}} - 1}}{x}\)

\( = \mathop {\lim }\limits_{x \to 0} \left( {\sqrt {1 + 2{\rm{x}}} .\frac{{\sqrt[3]{{1 + 3{\rm{x}}}} - 1}}{x}} \right) + \mathop {\lim }\limits_{x \to 0} \left( {\frac{{\sqrt {1 + 2{\rm{x}}} - 1}}{x}} \right) + \mathop {\lim }\limits_{x \to 0} \left( {\sqrt {1 + 2{\rm{x}}} .\sqrt[3]{{1 + 3{\rm{x}}}}.\frac{{\sqrt[4]{{1 + 4{\rm{x}}}} - 1}}{x}} \right)\)

Ta có: \(\mathop {\lim }\limits_{x \to 0} \left( {\frac{{\sqrt {1 + 2{\rm{x}}} - 1}}{x}} \right) = \mathop {\lim }\limits_{x \to 0} \frac{{\left( {\sqrt {1 + 2{\rm{x}}} - 1} \right).\left( {\sqrt {1 + 2{\rm{x}}} + 1} \right)}}{{x\left( {\sqrt {1 + 2{\rm{x}}} + 1} \right)}}\)

\( = \mathop {\lim }\limits_{x \to 0} \frac{{2{\rm{x}}}}{{x\left( {\sqrt {1 + 2{\rm{x}}} + 1} \right)}} = \mathop {\lim }\limits_{x \to 0} \frac{2}{{\left( {\sqrt {1 + 2{\rm{x}}} + 1} \right)}} = \frac{2}{{1 + 1}} = 1\)

Ta có:

\(\mathop {\lim }\limits_{x \to 0} \left( {\sqrt {1 + 2{\rm{x}}} .\frac{{\sqrt[3]{{1 + 3{\rm{x}}}} - 1}}{x}} \right)\)

\( = \mathop {\lim }\limits_{x \to 0} \left\{ {\sqrt {1 + 2{\rm{x}}} .\frac{{\left( {\sqrt[3]{{1 + 3{\rm{x}}}} - 1} \right)\left[ {{{\left( {\sqrt[3]{{1 + 3{\rm{x}}}}} \right)}^2} + \sqrt[3]{{1 + 3{\rm{x}}}} + 1} \right]}}{{x\left[ {{{\left( {\sqrt[3]{{1 + 3{\rm{x}}}}} \right)}^2} + \sqrt[3]{{1 + 3{\rm{x}}}} + 1} \right]}}} \right\}\)

\( = \mathop {\lim }\limits_{x \to 0} \left\{ {\sqrt {1 + 2{\rm{x}}} .\frac{{3{\rm{x}}}}{{x\left[ {{{\left( {\sqrt[3]{{1 + 3{\rm{x}}}}} \right)}^2} + \sqrt[3]{{1 + 3{\rm{x}}}} + 1} \right]}}} \right\}\)

\( = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{3\sqrt {1 + 2{\rm{x}}} }}{{\left[ {{{\left( {\sqrt[3]{{1 + 3{\rm{x}}}}} \right)}^2} + \sqrt[3]{{1 + 3{\rm{x}}}} + 1} \right]}}} \right) = \frac{{3.1}}{{1 + 1 + 1}} = 1\)

Ta có: \(\mathop {\lim }\limits_{x \to 0} \left( {\sqrt {1 + 2{\rm{x}}} .\sqrt[3]{{1 + 3{\rm{x}}}}.\frac{{\sqrt[4]{{1 + 4{\rm{x}}}} - 1}}{x}} \right)\)

\( = \mathop {\lim }\limits_{x \to 0} \left( {\sqrt {1 + 2{\rm{x}}} .\sqrt[3]{{1 + 3{\rm{x}}}}.\frac{{\left( {\sqrt[4]{{1 + 4{\rm{x}}}} - 1} \right)\left[ {{{\left( {\sqrt[4]{{1 + 4{\rm{x}}}}} \right)}^3} + {{\left( {\sqrt[4]{{1 + 4{\rm{x}}}}} \right)}^2} + \left( {\sqrt[4]{{1 + 4{\rm{x}}}}} \right) + 1} \right]}}{{x\left[ {{{\left( {\sqrt[4]{{1 + 4{\rm{x}}}}} \right)}^3} + {{\left( {\sqrt[4]{{1 + 4{\rm{x}}}}} \right)}^2} + \left( {\sqrt[4]{{1 + 4{\rm{x}}}}} \right) + 1} \right]}}} \right)\)

\( = \mathop {\lim }\limits_{x \to 0} \left( {\sqrt {1 + 2{\rm{x}}} .\sqrt[3]{{1 + 3{\rm{x}}}}.\frac{{4{\rm{x}}}}{{x\left[ {{{\left( {\sqrt[4]{{1 + 4{\rm{x}}}}} \right)}^3} + {{\left( {\sqrt[4]{{1 + 4{\rm{x}}}}} \right)}^2} + \left( {\sqrt[4]{{1 + 4{\rm{x}}}}} \right) + 1} \right]}}} \right)\)

\( = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{4\sqrt {1 + 2{\rm{x}}} .\sqrt[3]{{1 + 3{\rm{x}}}}}}{{\left[ {{{\left( {\sqrt[4]{{1 + 4{\rm{x}}}}} \right)}^3} + {{\left( {\sqrt[4]{{1 + 4{\rm{x}}}}} \right)}^2} + \left( {\sqrt[4]{{1 + 4{\rm{x}}}}} \right) + 1} \right]}}} \right) = \frac{{4.1.1}}{{1 + 1 + 1 + 1}} = 1\)

Suy ra \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {1 + 2{\rm{x}}} .\sqrt[3]{{1 + 3{\rm{x}}}}.\sqrt[4]{{1 + 4{\rm{x}}}} - 1}}{x} = 1 + 1 + 1 = 3\)

Vậy ta chọn đáp án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số y = f(x) xác định trên R\{1},  liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình vẽ:

Số giá trị nguyên của tham số m để phương trình f(x) = m có 3 nghiệm phân biệt là A. 1 (ảnh 1)

Số giá trị nguyên của tham số m để phương trình f(x) = m có 3 nghiệm phân biệt là

Xem đáp án » 26/09/2023 12,512

Câu 2:

Tìm m để phương trình x2 – 4x + m = 0 có 2 nghiệm phân biệt thuộc khoảng (0; 3).

Xem đáp án » 11/07/2024 5,397

Câu 3:

Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:

Bất phương trình f(x) < ex + m đúng với mọi x thuộc (-1; 1) khi và chỉ khi: A. m  (ảnh 1)

Bất phương trình f(x) < ex + m đúng với mọi x (–1; 1) khi và chỉ khi:

Xem đáp án » 26/09/2023 4,024

Câu 4:

Cho tứ diện ABCD. Gọi H, K lần lượt là trung điểm của các cạnh AC, BC. Trong tam giác BCD lấy điểm M sao cho hai đường thẳng KM và CD cắt nhau tại I. Tìm thiết diện của tứ diện với (HKM) trong hai trường hợp:

a) I nằm trong đoạn CD.

b) I nằm ngoài đoạn CD.

Xem đáp án » 11/07/2024 3,130

Câu 5:

Cho phương trình \(\log _2^2x - 2{\log _2}x - \sqrt {m + {{\log }_2}x} = m\) (*). Có bao nhiêu giá trị nguyên của tham số m [–2019; 2019] để phương trình (*) có nghiệm?

Xem đáp án » 26/09/2023 3,119

Câu 6:

Bất phương trình \({\log _{\frac{2}{3}}}\left( {2{{\rm{x}}^2} - x - 1} \right) > 0\) có tập nghiệm là (a; b) (c; d). Tính tổng a + b + c + d.

Xem đáp án » 26/09/2023 2,149

Câu 7:

Một thầy giáo có 12 cuốn sách đôi một khác nhau, trong đó có 5 cuốn sách văn học, 4 cuốn sách âm nhạc và 3 cuốn sách hội họa. Thầy muốn lấy ra 6 cuốn và đem tặng cho 6 học sinh mỗi em một cuốn. Thầy giáo muốn rằng sau khi tặng xong, mỗi một trong 3 thể loại văn học, âm nhạc, hội họa đều còn lại ít nhất một cuốn. Hỏi thầy có tất cả bao nhiêu cách tặng?

Xem đáp án » 26/09/2023 1,963

Bình luận


Bình luận