Câu hỏi:

26/09/2023 615 Lưu

Tính \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {1 + 2{\rm{x}}} \cdot \sqrt[3]{{1 + 3{\rm{x}}}} \cdot \sqrt[4]{{1 + 4{\rm{x}}}} - 1}}{x}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Ta có: \(\sqrt {1 + 2{\rm{x}}} \cdot \sqrt[3]{{1 + 3{\rm{x}}}} \cdot \sqrt[4]{{1 + 4{\rm{x}}}} - 1\)

\( = \sqrt {1 + 2{\rm{x}}} - \sqrt {1 + 2{\rm{x}}} + \sqrt {1 + 2{\rm{x}}} .\sqrt[3]{{1 + 3{\rm{x}}}} - \sqrt {1 + 2{\rm{x}}} \cdot \sqrt[3]{{1 + 3{\rm{x}}}} + \sqrt {1 + 2{\rm{x}}} \cdot \sqrt[3]{{1 + 3{\rm{x}}}} \cdot \sqrt[4]{{1 + 4{\rm{x}}}} - 1\)\( = \left( {\sqrt {1 + 2{\rm{x}}} - 1} \right) + \sqrt {1 + 2{\rm{x}}} \cdot \left( {\sqrt[3]{{1 + 3{\rm{x}}}} - 1} \right) + \sqrt {1 + 2{\rm{x}}} \cdot \sqrt[3]{{1 + 3{\rm{x}}}}\left( {1 + \sqrt[4]{{1 + 4{\rm{x}}}}} \right)\)

Suy ra: \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {1 + 2{\rm{x}}} .\sqrt[3]{{1 + 3{\rm{x}}}}.\sqrt[4]{{1 + 4{\rm{x}}}} - 1}}{x}\)

\( = \mathop {\lim }\limits_{x \to 0} \left( {\sqrt {1 + 2{\rm{x}}} .\frac{{\sqrt[3]{{1 + 3{\rm{x}}}} - 1}}{x}} \right) + \mathop {\lim }\limits_{x \to 0} \left( {\frac{{\sqrt {1 + 2{\rm{x}}} - 1}}{x}} \right) + \mathop {\lim }\limits_{x \to 0} \left( {\sqrt {1 + 2{\rm{x}}} .\sqrt[3]{{1 + 3{\rm{x}}}}.\frac{{\sqrt[4]{{1 + 4{\rm{x}}}} - 1}}{x}} \right)\)

Ta có: \(\mathop {\lim }\limits_{x \to 0} \left( {\frac{{\sqrt {1 + 2{\rm{x}}} - 1}}{x}} \right) = \mathop {\lim }\limits_{x \to 0} \frac{{\left( {\sqrt {1 + 2{\rm{x}}} - 1} \right).\left( {\sqrt {1 + 2{\rm{x}}} + 1} \right)}}{{x\left( {\sqrt {1 + 2{\rm{x}}} + 1} \right)}}\)

\( = \mathop {\lim }\limits_{x \to 0} \frac{{2{\rm{x}}}}{{x\left( {\sqrt {1 + 2{\rm{x}}} + 1} \right)}} = \mathop {\lim }\limits_{x \to 0} \frac{2}{{\left( {\sqrt {1 + 2{\rm{x}}} + 1} \right)}} = \frac{2}{{1 + 1}} = 1\)

Ta có:

\(\mathop {\lim }\limits_{x \to 0} \left( {\sqrt {1 + 2{\rm{x}}} .\frac{{\sqrt[3]{{1 + 3{\rm{x}}}} - 1}}{x}} \right)\)

\( = \mathop {\lim }\limits_{x \to 0} \left\{ {\sqrt {1 + 2{\rm{x}}} .\frac{{\left( {\sqrt[3]{{1 + 3{\rm{x}}}} - 1} \right)\left[ {{{\left( {\sqrt[3]{{1 + 3{\rm{x}}}}} \right)}^2} + \sqrt[3]{{1 + 3{\rm{x}}}} + 1} \right]}}{{x\left[ {{{\left( {\sqrt[3]{{1 + 3{\rm{x}}}}} \right)}^2} + \sqrt[3]{{1 + 3{\rm{x}}}} + 1} \right]}}} \right\}\)

\( = \mathop {\lim }\limits_{x \to 0} \left\{ {\sqrt {1 + 2{\rm{x}}} .\frac{{3{\rm{x}}}}{{x\left[ {{{\left( {\sqrt[3]{{1 + 3{\rm{x}}}}} \right)}^2} + \sqrt[3]{{1 + 3{\rm{x}}}} + 1} \right]}}} \right\}\)

\( = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{3\sqrt {1 + 2{\rm{x}}} }}{{\left[ {{{\left( {\sqrt[3]{{1 + 3{\rm{x}}}}} \right)}^2} + \sqrt[3]{{1 + 3{\rm{x}}}} + 1} \right]}}} \right) = \frac{{3.1}}{{1 + 1 + 1}} = 1\)

Ta có: \(\mathop {\lim }\limits_{x \to 0} \left( {\sqrt {1 + 2{\rm{x}}} .\sqrt[3]{{1 + 3{\rm{x}}}}.\frac{{\sqrt[4]{{1 + 4{\rm{x}}}} - 1}}{x}} \right)\)

\( = \mathop {\lim }\limits_{x \to 0} \left( {\sqrt {1 + 2{\rm{x}}} .\sqrt[3]{{1 + 3{\rm{x}}}}.\frac{{\left( {\sqrt[4]{{1 + 4{\rm{x}}}} - 1} \right)\left[ {{{\left( {\sqrt[4]{{1 + 4{\rm{x}}}}} \right)}^3} + {{\left( {\sqrt[4]{{1 + 4{\rm{x}}}}} \right)}^2} + \left( {\sqrt[4]{{1 + 4{\rm{x}}}}} \right) + 1} \right]}}{{x\left[ {{{\left( {\sqrt[4]{{1 + 4{\rm{x}}}}} \right)}^3} + {{\left( {\sqrt[4]{{1 + 4{\rm{x}}}}} \right)}^2} + \left( {\sqrt[4]{{1 + 4{\rm{x}}}}} \right) + 1} \right]}}} \right)\)

\( = \mathop {\lim }\limits_{x \to 0} \left( {\sqrt {1 + 2{\rm{x}}} .\sqrt[3]{{1 + 3{\rm{x}}}}.\frac{{4{\rm{x}}}}{{x\left[ {{{\left( {\sqrt[4]{{1 + 4{\rm{x}}}}} \right)}^3} + {{\left( {\sqrt[4]{{1 + 4{\rm{x}}}}} \right)}^2} + \left( {\sqrt[4]{{1 + 4{\rm{x}}}}} \right) + 1} \right]}}} \right)\)

\( = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{4\sqrt {1 + 2{\rm{x}}} .\sqrt[3]{{1 + 3{\rm{x}}}}}}{{\left[ {{{\left( {\sqrt[4]{{1 + 4{\rm{x}}}}} \right)}^3} + {{\left( {\sqrt[4]{{1 + 4{\rm{x}}}}} \right)}^2} + \left( {\sqrt[4]{{1 + 4{\rm{x}}}}} \right) + 1} \right]}}} \right) = \frac{{4.1.1}}{{1 + 1 + 1 + 1}} = 1\)

Suy ra \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {1 + 2{\rm{x}}} .\sqrt[3]{{1 + 3{\rm{x}}}}.\sqrt[4]{{1 + 4{\rm{x}}}} - 1}}{x} = 1 + 1 + 1 = 3\)

Vậy ta chọn đáp án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Ta có sô nghiệm của phương trình f(x) = m bằng số giao điềm của đồ thị hàm số y = f(x) và đường thẳng y = m

Do đó, dựa vào bàng biến thiên ta thấy, phương trình f(x) = m có 3 nghiệm phân biệt khi và chỉ khi 0 < m < 3

Kết hợp điều kiện \(m \in \mathbb{Z}\) suy ra \(m \in \{ 1;2\} \)

Do đó có 2 giá trị nguyên của tham số m thòa mãn yêu cầu bài toán

Vậy ta chọn đáp án D.

Lời giải

Đặt \(f(x) = {x^2} - 4x + m\)

Để phương trình có 2 nghiệm thỏa mãn \(0 < {x_1} < {x_2} < 3\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\Delta ' > 0}\\{f(0) > 0}\\{f(3) > 0}\\{0 < \frac{S}{2} < 3}\end{array} \Leftrightarrow \left\{ \begin{array}{l}{4^2} - 4m > 0\\0 + m > 0\\{3^2} - 4.3 + m > 0\\0 < \frac{4}{2} < 3\end{array} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{4 - m > 0}\\{m > 0}\\{m - 3 > 0}\\{0 < 2 < 3}\end{array} \Leftrightarrow 3 < m < 4} \right.} \right.\)

Vậy 3 < m < 4.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP