Câu hỏi:

26/09/2023 645

Cho hình chóp S.ABCD, đáy ABCD là hình bình hành, mặt phẳng (α) đi qua AB cắt cạnh SC, SD lần lượt tại M, N. Tính tỉ số \(\frac{{SN}}{{S{\rm{D}}}}\) để (α) chia khối chóp S.ABCD thành hai phần có thể tích bằng nhau.

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Cho hình chóp S.ABCD, đáy ABCD là hình bình hành, mặt phẳng (alpha) đi qua (ảnh 1)

Ta có (α) ∩ (SCD) = NM nên NM // CD

Do đó (α) là (ABMN)

Mặt phẳng (α) chia khối chóp thành 2 phần có thể tích bằng nhau là

\({V_{S.ABMN}} = {V_{ABCDNM}} \Rightarrow {V_{S.ABMN}} = \frac{1}{2}.{V_{S.ABCD}}\)                       (1)

Ta có: \({V_{S.ABC}} = {V_{S \cdot ACD}} = \frac{1}{2} \cdot {V_{S \cdot ABCD}}\)

Đặt \(\frac{{SN}}{{SD}} = x\) với \((0 < x < 1)\), khi đó theo Ta – let ta có \(\frac{{SN}}{{SD}} = \frac{{SM}}{{SC}} = x\)

Mặt khác \(\frac{{{V_{S.ABM}}}}{{{V_{S.ABC}}}} = \frac{{SA}}{{SA}}.\frac{{SB}}{{SB}}.\frac{{SM}}{{SC}} = x\)

Suy ra \({V_{S.ABM}} = \frac{x}{2}{V_{S.ABC{\rm{D}}}}\)

Ta có: \(\frac{{{V_{S.AMN}}}}{{{V_{S.ABD}}}} = \frac{{SA}}{{SA}}.\frac{{SN}}{{SD}}.\frac{{SM}}{{SC}} = {x^2}\)

Suy ra \({V_{S.AMN}} = \frac{{{x^2}}}{2}{V_{S.ABC{\rm{D}}}}\)

Ta có: \({V_{S.ABMN}} = {V_{S.AMB}} + {V_{S.AMN}} = \left( {\frac{x}{2} + \frac{{{x^2}}}{2}} \right){V_{S.ABC{\rm{D}}}}\)                  (2)

Từ (1) và (2) suy ra

\(\begin{array}{l}\frac{x}{2} + \frac{{{x^2}}}{2} = \frac{1}{2}\\ \Leftrightarrow {x^2} + x - 1 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{{ - 1 - \sqrt 5 }}{2}\\x = \frac{{ - 1 + \sqrt 5 }}{2}\end{array} \right.\end{array}\)

\((0 < x < 1)\) nên \(x = \frac{{\sqrt 5 - 1}}{2}\)

Hay \(\frac{{SN}}{{S{\rm{D}}}} = \frac{{\sqrt 5 - 1}}{2}\)

Vậy ta chọn đáp án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số y = f(x) xác định trên R\{1},  liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình vẽ:

Số giá trị nguyên của tham số m để phương trình f(x) = m có 3 nghiệm phân biệt là A. 1 (ảnh 1)

Số giá trị nguyên của tham số m để phương trình f(x) = m có 3 nghiệm phân biệt là

Xem đáp án » 26/09/2023 12,512

Câu 2:

Tìm m để phương trình x2 – 4x + m = 0 có 2 nghiệm phân biệt thuộc khoảng (0; 3).

Xem đáp án » 11/07/2024 5,397

Câu 3:

Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:

Bất phương trình f(x) < ex + m đúng với mọi x thuộc (-1; 1) khi và chỉ khi: A. m  (ảnh 1)

Bất phương trình f(x) < ex + m đúng với mọi x (–1; 1) khi và chỉ khi:

Xem đáp án » 26/09/2023 4,024

Câu 4:

Cho tứ diện ABCD. Gọi H, K lần lượt là trung điểm của các cạnh AC, BC. Trong tam giác BCD lấy điểm M sao cho hai đường thẳng KM và CD cắt nhau tại I. Tìm thiết diện của tứ diện với (HKM) trong hai trường hợp:

a) I nằm trong đoạn CD.

b) I nằm ngoài đoạn CD.

Xem đáp án » 11/07/2024 3,130

Câu 5:

Cho phương trình \(\log _2^2x - 2{\log _2}x - \sqrt {m + {{\log }_2}x} = m\) (*). Có bao nhiêu giá trị nguyên của tham số m [–2019; 2019] để phương trình (*) có nghiệm?

Xem đáp án » 26/09/2023 3,119

Câu 6:

Bất phương trình \({\log _{\frac{2}{3}}}\left( {2{{\rm{x}}^2} - x - 1} \right) > 0\) có tập nghiệm là (a; b) (c; d). Tính tổng a + b + c + d.

Xem đáp án » 26/09/2023 2,149

Câu 7:

Một thầy giáo có 12 cuốn sách đôi một khác nhau, trong đó có 5 cuốn sách văn học, 4 cuốn sách âm nhạc và 3 cuốn sách hội họa. Thầy muốn lấy ra 6 cuốn và đem tặng cho 6 học sinh mỗi em một cuốn. Thầy giáo muốn rằng sau khi tặng xong, mỗi một trong 3 thể loại văn học, âm nhạc, hội họa đều còn lại ít nhất một cuốn. Hỏi thầy có tất cả bao nhiêu cách tặng?

Xem đáp án » 26/09/2023 1,963

Bình luận


Bình luận