Câu hỏi:
11/07/2024 11,318
Các nhà tâm lí học sử dụng mô hình hàm số mũ để mô phỏng quá trình học tập của một học sinh như sau: f(t) = c(1 – e–kt), trong đó c là tổng số đơn vị kiến thức học sinh phải học, k (kiến thức/ngày) là tốc độ tiếp thu của học sinh, t (ngày) là thời gian học và f(t) là số đơn vị kiến thức học sinh đã học được (Nguồn: R.I. Charles et al., Algebra 2, Pearson). Giả sử một em học sinh phải tiếp thu 25 đơn vị kiến thức mới. Biết rằng tốc độ tiếp thu của em học sinh là k = 0,2. Hỏi em học sinh sẽ học được (khoảng) bao nhiêu đơn vị kiến thức mới sau 2 ngày? Sau 8 ngày? (Làm tròn kết quả đến hàng đơn vị).
Các nhà tâm lí học sử dụng mô hình hàm số mũ để mô phỏng quá trình học tập của một học sinh như sau: f(t) = c(1 – e–kt), trong đó c là tổng số đơn vị kiến thức học sinh phải học, k (kiến thức/ngày) là tốc độ tiếp thu của học sinh, t (ngày) là thời gian học và f(t) là số đơn vị kiến thức học sinh đã học được (Nguồn: R.I. Charles et al., Algebra 2, Pearson). Giả sử một em học sinh phải tiếp thu 25 đơn vị kiến thức mới. Biết rằng tốc độ tiếp thu của em học sinh là k = 0,2. Hỏi em học sinh sẽ học được (khoảng) bao nhiêu đơn vị kiến thức mới sau 2 ngày? Sau 8 ngày? (Làm tròn kết quả đến hàng đơn vị).
Quảng cáo
Trả lời:
Để tính số đơn vị kiến thức học sinh đã học được sau một số ngày nhất định, ta chỉ cần thay giá trị của t vào công thức f(t) = c(1 – e–kt) với c = 25 và k = 0,2.
Lúc này ta có f(t) = 25(1 – e−0,2t).
⦁ Số đơn vị kiến thức học sinh đã học được sau 2 ngày:
Thay t = 2 vào công thức f(t) = 25(1 – e−0,2t) ta có:
f(2) = 25(1 – e–0,2.2) ≈ 8 (đơn vị kiến thức).
⦁ Số đơn vị kiến thức học sinh đã học được sau 8 ngày:
Thay t = 8 vào công thức f(t) = 25(1 – e−0,2t) ta có:
f(8) = 25(1 – e–0,2.8) ≈ 20 (đơn vị kiến thức).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Ta coi năm lấy làm mốc để tính dân số của một vùng (hoặc một quốc gia) là năm 0. Khi đó, dân số của quốc gia đó ở năm thứ t là hàm số theo biến t được cho bởi công thức: S = A.ert, trong đó A là dân số của vùng (hoặc quốc gia) đó ở năm 0 và r là tỉ lệ tăng dân số hằng năm (Nguồn: Giải tích 12, NXBGD Việt Nam, 2021). Biết rằng dân số Việt Nam năm 2021 ước tính là 98 564 407 người và tỉ lẹ̣ tăng dân số 0,93%/năm (Nguồn: https://danso.org/viet–nam). Giả sử tỉ lệ tăng dân số hằng năm là như nhau tính từ năm 2021, nêu dự đoán dân số Việt Nam năm 2030 (làm tròn kết quả đến hàng đơn vị).
Ta coi năm lấy làm mốc để tính dân số của một vùng (hoặc một quốc gia) là năm 0. Khi đó, dân số của quốc gia đó ở năm thứ t là hàm số theo biến t được cho bởi công thức: S = A.ert, trong đó A là dân số của vùng (hoặc quốc gia) đó ở năm 0 và r là tỉ lệ tăng dân số hằng năm (Nguồn: Giải tích 12, NXBGD Việt Nam, 2021). Biết rằng dân số Việt Nam năm 2021 ước tính là 98 564 407 người và tỉ lẹ̣ tăng dân số 0,93%/năm (Nguồn: https://danso.org/viet–nam). Giả sử tỉ lệ tăng dân số hằng năm là như nhau tính từ năm 2021, nêu dự đoán dân số Việt Nam năm 2030 (làm tròn kết quả đến hàng đơn vị).
Lời giải
Ta có: S = A . ert
Trong đó:
⦁ S là dân số của Việt Nam năm 2030 (cần dự đoán);
⦁ A là dân số của Việt Nam năm 2021, A = 98 564 407 người;
⦁ r là tỉ lệ tăng dân số hàng năm, r = 0,93%;
⦁ t là số năm từ năm 2021 đến năm 2030, tức là t = 2030 – 2021 = 9 năm.
Thay các giá trị vào công thức, ta có:
S = 98 564 407 . e0,93%.9 = 98 564 407 . e0,0837 ≈ 107 169 341 (người).
Vậy dự đoán dân số Việt Nam năm 2030 là khoảng 107 169 341 người.
Lời giải
Mẫu 1:
pH = – log[H+] = –log(8 . 10–7) = – (log8 + log10–7)
= – log8 – log10–7 = – log8 + 7log10
= – log23 + 7 = – 3log2 + 7.
Mẫu 2:
pH = – log[H+] = –log(2 . 10–9) = – (log2 – log10–9)
= – log2 – log10–9 = – log2 + 9log10
= – log2 + 9.
Vì 3log2 > log2 nên – 3log2 < – log2
Suy ra – 3log2 + 7 < – log2 + 7
Hay – 3log2 + 7 < – log2 + 9
Do đó độ pH của mẫu 1 nhỏ hơn độ pH của mẫu 2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.