Câu hỏi:

13/07/2024 1,752 Lưu

Tìm điểm cố định mà mỗi đường thẳng d’: y = (m – 2)x + 3 luôn đi qua với mọi giá trị của m.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Giả sử điểm cố định của đồ thị hàm số y = (m – 2)x + 3 là I(x0; y0).

Thay x = x0 và y = y0 vào y = (m – 2)x + 3, ta được:

y0 = (m – 2)x0 + 3

Û mx0 – 2x0 + 3 – y0 = 0

Û mx0 – (y0 + 2x0 – 3) = 0 (1)

Để (1) luôn đúng với mọi giá trị của m thì \[\left\{ \begin{array}{l}{x_0} = 0\\{x_0} + 2{y_0} - 3 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_0} = 0\\0 + {y_0} - 3 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_0} = 0\\{y_0} = 3\end{array} \right.\].

Vậy đồ thị hàm số y = (m – 2)x + 3 luôn đi qua điểm cố định I(0; 3).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Đáp án đúng là: B

Vì hàm số \[y = 2 - \frac{{2x}}{3}\] có dạng y = ax + b với \[a = \frac{{ - 2}}{3}\] và b = 2.

Lời giải

Lời giải

Đồ thị hàm số \[y = f(x) = \frac{2}{3}x + 5\] cắt Ox tại M nên yM = 0.

Do đó: \[\frac{2}{3}x + 5 = 0 \Leftrightarrow \frac{2}{3}x = - 5 \Leftrightarrow x = \frac{{ - 15}}{2}\].

Suy ra đồ thị hàm số \[y = f(x) = \frac{2}{3}x + 5\] cắt Ox tại \[M\left( {\frac{{ - 15}}{2};0} \right)\].

Đồ thị hàm số \[y = f(x) = \frac{2}{3}x + 5\] cắt Oy tại N nên xN = 0.

Thay xN = 0 vào f(x) ta có: \[y = \frac{2}{3} \cdot 0 + 5\]= 5.

Suy ra đồ thị hàm số \[y = f(x) = \frac{2}{3}x + 5\] cắt Oy tại N(0; 5).

Vậy đồ thị hàm số \[y = f(x) = \frac{2}{3}x + 5\] cắt Ox, Oy tại \[M\left( {\frac{{ - 15}}{2};0} \right)\] và N(0; 5).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP