Câu hỏi:
20/10/2023 45,523
Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, SA ⊥ (ABCD) và .
a) Tính góc giữa SC và mặt phẳng (ABCD).
Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, SA ⊥ (ABCD) và .
a) Tính góc giữa SC và mặt phẳng (ABCD).
Quảng cáo
Trả lời:

a) Vì SA ^ (ABCD) nên A là hình chiếu của S trên mặt phẳng (ABCD).
Do đó AC là hình chiếu của SC trên mặt phẳng (ABCD).
Khi đó góc giữa SC và mặt phẳng (ABCD) bằng góc giữa hai đường thẳng AC và SC, mà (AC, SC) = .
Vì ABCD là hình vuông cạnh a nên .
Vì SA ^ (ABCD) nên SA ^ AC.
Xét tam giác SAC vuông tại A và SA = AC = nên tam giác SAC vuông cân tại A, suy ra .
Vậy góc giữa SC và mặt phẳng (ABCD) bằng 45°.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Kẻ AD ^ SB tại D.
Vì SA ^ (ABC) nên SA ^ BC.
Do ABC là tam giác vuông tại B nên AB ^ BC mà SA ^ BC, suy ra BC ^ (SAB).
Vì BC ^ (SAB) nên BC ^ AD mà AD ^ SB nên AD ^ (SBC).
Vậy D là hình chiếu của A trên mặt phẳng (SBC).
Lời giải

a) Vì SA ^ (ABC) nên A là hình chiếu của S trên mặt phẳng (ABC).
b) Có A là hình chiếu của S trên mặt phẳng (ABC),
B là hình chiếu của B trên mặt phẳng (ABC),
C là hình chiếu của C trên mặt phẳng (ABC).
Do đó hình chiếu của tam giác SBC trên mặt phẳng (ABC) là tam giác ABC.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.