Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

c) Gọi O là giao điểm của AC và BD và ABCD là hình vuông, suy ra BO ^ AC.

Mà SA ^ (ABCD) nên SA ^ BO.

Vì SA ^ BO và BO ^ AC nên BO ^ (SAC), suy ra O là hình chiếu của B trên mặt phẳng (SAC).

Có S là hình chiếu của S trên mặt phẳng (SAC).

Do đó SO là hình chiếu của SB trên mặt phẳng (SAC).

Son Vàng thi

Son Vàng thi

Cho hình chóp đều có đáy là tam giác đều cạnh a, cạnh bên bằng b
a, xác định hình chiến của SB trên (ABC)
b, tính sin của góc giữa cạnh bên và mặt đáy.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, SA ⊥ (ABCD) và  SA= a căn 2.  a) Tính góc giữa SC và mặt phẳng (ABCD). (ảnh 1)

a) Vì SA ^ (ABCD) nên A là hình chiếu của S trên mặt phẳng (ABCD).

Do đó AC là hình chiếu của SC trên mặt phẳng (ABCD).

Khi đó góc giữa SC và mặt phẳng (ABCD) bằng góc giữa hai đường thẳng AC và SC, mà (AC, SC) = SCA^ .

Vì ABCD là hình vuông cạnh a nên AC=AB2+BC2=a2 .

SA ^ (ABCD) nên SA ^ AC.

Xét tam giác SAC vuông tại A và SA = AC = a2  nên tam giác SAC vuông cân tại A, suy ra SCA^=45° .

Vậy góc giữa SC và mặt phẳng (ABCD) bằng 45°.

Lời giải

a) Kẻ AD ^ SB tại D.

Vì SA ^ (ABC) nên SA ^ BC.

Do ABC là tam giác vuông tại B nên AB ^ BC mà SA ^ BC, suy ra BC ^ (SAB).

Vì BC ^ (SAB) nên BC ^ AD mà AD ^ SB nên AD ^ (SBC).

Vậy D là hình chiếu của A trên mặt phẳng (SBC).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP